LabVIEW Consultants2019-06-25T15:34:22-04:00

LabVIEW Consultants

US-based manufacturers: Need a LabVIEW Expert?

This puts us in the top 2% worldwide

Need some existing code updated?  Need a whole new LabVIEW-based test system?  Whether you had code dropped on your lap, or you’re just too busy with other things, our LabVIEW experts can take the LabVIEW programming off your plate so you can focus on what you need to.

We have one or more:

Certified LabVIEW Architect

Certified LabVIEW Developer

Certified TestStand Architect

Certified TestStand Developer

Talk to a LabVIEW Consultant.

We care about your privacy

We’ve helped teams at some of the world’s most innovative companies

Testimonials

“Very impressed…kudos to Viewpoint”

I really want to thank you for all your help getting us to this stage in automating our testing. We had our customer in this week to oversee some testing and they were very impressed, which is definitely kudos to Viewpoint.

David, An Aerospace & Defense Company

“Significant value”

The Viewpoint team provides significant value to our projects, and I really enjoy working with Viewpoint.

Jerzy Wolujewicz, PhD, Nammo Pocal Inc.

“Valuable part of our global team”

I have been working with Viewpoint for 15+ years on multiple projects. They have always provided creative and quick solutions to all of the problems we have placed in front of them. I have always considered them a valuable part of our global team.

Engineering Group, A Global Manufacturer

LabVIEW Case Studies | Projects

Endurance Tester for Mission-Critical Mechanical Component using NI cRIO

Endurance Tester for Mission-Critical Mechanical Component using NI cRIO

Ability to run tests unattended and overnight reduces operator labor and compresses test schedules

Client – Major Aerospace Component Supplier / Manufacturer

Challenge

The client had an older VB & PLC-based test system in place already, but it was obsolete. A new endurance test system needed to be developed to validate prototyped components (in this case, aircraft & aerospace bearings). Many of the prototypes are one-off, so it was important that the test system not destroy the component.

Solution

A new endurance test system was developed to validate prototyped components. The test system can be configured for automatic shutdowns so as not to destroy the component under test in the event of unexpected performance of electro-mechanical subsystem components. The updated endurance tester supports product validation by allowing the product to run under various test conditions (e.g. speed, load, oil flow, temperature) and collecting data for analysis.

Viewpoint developed the software and selected the NI hardware (other hardware was selected by the client).

Benefits

  • Ability to run tests unattended and overnight eases operator labor and compresses test schedules

  • Data collection allows for offline engineering analysis

  • Automatic shutdowns reduce destruction of the prototype component under test

System Overview

The updated cRIO-based endurance tester incorporates configurable profiles, data logging, and automatic shutdown to allow for safer extended validation testing.  LabVIEW FPGA and LabVIEW RT were used together to interface with the test hardware sensors and controls.  LabVIEW as used create the HMI for the test system.

SOFTWARE FUNCTIONS
Closed loop control of bearing test oil flow
Axial load control
Driver for Emerson VFD
E-Stop and safety management (shutdowns based on alarm limits)
Data collection – temperature, pressure, flow, vibration, frequency
Operator/Diagnostic GUI for control of system
HARDWARE USED
NI CompactRIO (cRIO)
NI C Series Current Input Module
NI C Series Voltage Input Module
NI C Series Temperature Input Module
NI C Series Current Output Module
NI C Series Analog Input Module
NI C Series Sound and Vibration Input Module
NI C Series Digital Module
Emerson VFD (Variable Frequency Drive)
INTERFACES / PROTOCOLS
TCP/IP
TCP Modbus
HAVE A SIMILAR CHALLENGE? GET A TEST SYSTEM CONSULTATION »

Industrial Automation – Improving Manufacturing Process with a semi-automated welder

Industrial Automation – Improving Manufacturing Process with a semi-automated welder

Automating a battery welder to improve consistency and increase throughput

Client

Industrial manufacturer of battery stacks

Challenge

The previous welding method was all manual, prone to errors and inconsistency.  The old system also required the operator be in contact with the module while welding without any safety shielding.

Solution

The welder semi-automates the ultrasonic welding of terminals on a battery module as part of the manufacturing process. It allows for welds to be conducted in the same place for every module, reducing variability and operator errors.  This system is also quicker than doing the welds manually.

Benefits

  • Increased weld consistency
  • Improved operator safety
  • Increased welder throughput

System Overview

The system semi-automates the ultrasonic welding of terminals on a battery module.  The system consists of an ultrasonic welder, XYZ table, and safety interlocks.  The table moves the battery module to the correct welding position.  Once in position, the Z portion of the table lowers the welder to the correct welding height.  The application sends the signal to the welder to conduct the weld.  Weld data is saved to a file from the welder Ethernet interface for later analysis.  Viewpoint provided the software for this system, while the client provided the hardware for us to interface with.

Considerable attention was paid to addressing faults in the production process to avoid damage to the operator and the battery module during the welding process, due to the high current output available from the battery module.

SOFTWARE FUNCTIONS
Welding routing configuration
Operator GUI
Maintenance mode
Interface to welder
Interface to table & controller
Interface to E-Stop & interlocks
INTERFACES / PROTOCOLS
RS-485
Ethernet
24V Digital IO

Endurance Tester using NI cRIO

Endurance Tester using NI cRIO

Multiple International Deployments Helps Prove Product Meets Spec.

Each endurance test can run upwards of 6 months.

Client: Major Automotive Component Supplier

Challenge

A new endurance test system was developed to give more precision in the control setpoint. This additional precision enabled potential clients to review the product performance in real-life situations.  Each endurance test can run upwards of 6 months.

Solution

The updated endurance tester supports product validation by providing the desired parameter control method, allowing the client to prove more obviously that their part met the stated specification.

Viewpoint developed the software and selected the NI hardware for the first unit.  The client is now deploying copies of this system to multiple international manufacturing plants.

Benefits

  • Able to prove meeting a particular product specification of interest
  • Closed loop parameter control
  • Data collection
  • Configurable Alarms
  • Emergency shutdown functionality

System Overview

The cRIO-based endurance tester provides closed loop control, data collection, and alarming with controlled and emergency shutdown functions.  The operator can manually configure a test or load a saved configuration.  After a manual operator check to make sure the setup is operating correctly, a successful test will run its full duration and stop on its own.

SOFTWARE FUNCTIONS
Touch PC interface / GUI
Closed loop parameter control
Data collection
Controlled & emergency shutdown
Alarming
HARDWARE USED
NI CompactRIO
NI analog input cSeries module
NI analog output cSeries module
NI digital input cSeries module
NI digital output cSeries module
INTERFACES / PROTOCOLS
TCP
Yes, I’d like to chat about my test system needs »

Product Validation using LabVIEW RT & LabVIEW FPGA – Electromechanical Actuator Test Stand

Product Validation using LabVIEW RT & LabVIEW FPGA – An electromechanical actuator test stand

Automated testing reduces operator man hours and increases production throughput.

Client – A manufacturer of actuators in the mil-aero industry.

Challenge

New Product Introduction (in this case a new controller and new actuators) drove the need for a new automated electromechanical test stand.

Solution

New NI PXI-based electromechanical test equipment provided automated testing, report generation, and SPC data generation.  The sequencing of the test procedure, reporting, and verifiable results were managed with the StepWise platform.

Benefits

  • Automated testing reduces operator man hours and increases production throughput.
  • Meets strict customer requirements regarding testing and data recording in a verifiable manner.
  • Automated Test Report Generation.
  • Collects data to support SPC (Statistical Process Control).
  • Ability to obtain the internal state of the controller FPGA via the LVDS communication link.

System Overview

Viewpoint developed the software and selected NI data acquisition and control hardware for the test stand.  There are several layers of software functionality.

HOST LABVIEW SOFTWARE LAYER
Test sequencer
Test steps (e.g. Frequency Response, Step Response, Dynamic Stiffness, Fault Response, Power Consumption)
Test Report Generator
GUI
REAL-TIME (RT) LABVIEW SOFTWARE LAYER
Data acquisition
1553 comms
Function generator
Error detection
ESTOP
LABVIEW FPGA SOFTWARE LAYER
Synch data from 3 sources (tester, UUT, external DAQ device)
Stream high-speed data to disk
Stream high-speed data to analog outputs for engineering use
Custom communication protocol used by UUT over LVDS lines
HARDWARE RECOMMENDED
NI PXIe
NI FlexRIO card with LVDS adapter module
Multiple NI R Series cards
High speed, high voltage, isolated analog input cards
INTERFACES / PROTOCOLS
MIL-STD 1553 bus
LVDS
Ethernet
Custom TCP/IP

*- images are conceptual only, not actual

Yes, I need an automated test system »

Creating an N-Up Tester to handle increased production volume demands

Creating an N-Up Tester to handle increased production volume demands

Enhanced throughput offers ROI payback period of less than 1 year

Client

Automotive Components Supplier / Manufacturer

Challenge

The company makes automotive components in very large volume, several part models each at more than 1 million per year.

The client’s primary concern was conserving floor space. They were completely out of spare manufacturing space.

Solution

Viewpoint created an N-up NI PXI-based Manufacturing Test System. In this case, N=6 because analysis showed that a 6-up electronic part tester allowed the test operator to cover the test time with the load/unload time.

At the high volumes needed, the client needed to parallelize as much as possible. The cost of 6 sets of test equipment and device sockets was less important than speed. Using the equation:

ProfitPerUnit x NumberAdditionalPartsPerYearAfterParallelizing > CostOfTestEquipment,

being able to completely parallelize made the number of extra units per year large enough that the payback time for completely duplicating the measurement instrumentation for each UUT socket was less than about 1 year.

Benefits

  • Paid for itself in less than 1 year by the enhanced throughput.
  • This approach consumed about 20% the floor space that would have been used for duplicating the test system 5 more times (for a total of 6 testers)

System Overview

Viewpoint developed an NI TestStand application that ran 6 instances of the test sequence independently of each other utilizing the duplicated PXI-based test equipment. The common parts of the overall master sequence were:

  • Startup check for the entire test stand
  • Shutdown of the entire test stand
  • Archiving the test results into the database

Part handling was managed by a PLC and robot which delivered the parts from a tray into the UUT sockets. Digital bits were used for signaling the test sequence which parts were present in their sockets and ready to test.

SOFTWARE FUNCTIONS
Test System GUI
Test sequencer
Startup checker
Test Results Archiver
Yes, I need an N-up tester »

Increasing Test System Automation for Existing Tester to handle Production Volume Demand Increase

Increasing Test System Automation for Existing Tester to handle Production Volume Demand Increase

Reduced test time across several products by an average of ~25% and reduced time to create paperwork by ~3x

Client

Manufacturer of high-voltage power supplies

Challenge

The client already had an existing manufacturing test system in place. They wanted Viewpoint to enhance the tester due to an increase in production volume demand.  Viewpoint reviewed the existing test system and noted 3 areas for improvement:

  1. Automation available in the measurement instruments – most of the test equipment was automatable, via some combination of serial, GPIB, or Ethernet interfaces. Furthermore, some equipment, such as an oscilloscope, had the ability to store and recall setup configurations. The test operators already used these configurations to decrease setup time for the next test step. Most test equipment did not have automated setup.
  2. Operator time spent on each test step – the client had been through a Lean assessment and had already done a good job of timing operations. However, we specifically noted that the operator was manually connecting to the test points and manually transcribing to paper the measurement results from instrument displays.
  3. Automating the connections – many types of product models were being tested at this test system. Connecting the test equipment to all sorts of products would require either 1) many types of test harnesses and connectors or 2) a redesign of the products to make test connections simpler and quicker.

Solution

The enhanced automated test system included automation of instrumentation interfaces, a test executive to run the test sequences, automated test report generation, and automated test data archiving for the electronic UUT.

Benefits

  • Reduced total test time across several products by an average of ~25%.
  • Time to create paperwork was reduced by ~2/3 due to automated data collection.

System Overview

The enhanced test system included the following updates:

  • Test sequence automation
  • Automated test report generation
  • Automated test data archiving
  • Automation of instrumentation interfaces
  • Configurable automated test steps associated with each type of measurement instrument. The test operators would create a sequence of steps to setup each instrument and record the resulting measurement. The sequence of steps could be saved and recalled for each product to be tested, so the instruments could be used automatically.
  • New programmable meter – integrated the new DMM meter with a programmable interface to replace the one that was not automatable.
  • Foot switch integration – Since the connections to the test points were manual, a foot switch allowed the operator to take the measurement and advance to the next step.

The StepWise platform managed the multiple test procedures created for the different products. StepWise also handled creation of HTML reports for every part tested.

SOFTWARE FUNCTIONS
Test GUI
Test Sequencer
Report Generator
Test Data Archiving
Instrument interfaces
Yes, I need to increase my level of automation »

Product Validation & Production Test System – For complex Mission-critical sub-system

Product Validation & Production Test System – For complex Mission-critical sub-system

Client

Ensign-Bickford Aerospace & Defense

Upgrade reduces per unit test time by ~40% and improves reliability of software

Challenge

The customer needed to upgrade their existing test system.  Their old test system was very manual:

  • It did not provide ability for unattended operation
  • The thermal control had to be set manually
  • They wanted to do less manual review of the data

The client develops mission-critical products, so there’s a desire to reduce manual operations because they have to explain any anomalies, and manual operations are typically more error-prone.  They needed repeatable results that they could trust.

Solution

Viewpoint developed a new test system that utilized new hardware and software, augmented by existing low level hardware and firmware.  The test system was developed to perform both functional test for production and environmental testing, and was designed to handle up to 4 DUTs at once. The test system utilizes the StepWise test executive software with custom test steps, which allowed the client to create their own highly configurable test sequences.  The system was developed in two phases, with the second phase adding support for a FPGA expansion backplane (NI CompactRIO chassis) in order to provide future capability for bringing some of the microcontroller sequence activity into the NI space. In addition, the previous version had a mix of serial, TTL, and USB instrumentation, which was not as robust as Ethernet based instrumentation. Phase II involved upgrading to all Ethernet based instrumentation, and did away with the original test system’s many manual toggle switches that could be used instead of the programmable mode through the SW.

Benefits

  • ~40% test time reduction per unit
  • ~25% reduction in anomalies that needed to be justified
  • ~500 manhours saved in test execution

System Overview

Software Functions
Test sequencing
Test report generation
Data recording/logging
Error handling
Test GUI
Oscilloscope interface
Thermal chamber interface
Power supply interface
External custom hardware interface
I need an automated test system »

Industrial Equipment Remote Online Condition Monitoring

Industrial Equipment Remote Online Condition Monitoring

 

Using NI CompactRIO

Client

A manufacturer of large industrial mission-critical equipment in the electrical energy / power industry.

Challenge

Our client had three main goals in mind. They wanted to:

  1. Decrease unanticipated downtime and maintenance expenses
  2. Provide a more complete picture of machine operation and state
  3. Improve equipment usage tracking.

Solution

The solution is a multi-node (i.e. multi-site) remote monitoring system that utilizes an NI cRIO-based controller with customized NI InsightCM monitoring software.

Benefits

  • Monitors vibration signals to predict expensive equipment failures
  • Monitors current machine state via Modbus from other equipment in the system, including the primary system controller
  • Provides alerts via email when any designated parameter is out of range

System Overview

The remote monitoring system monitors equipment condition by taking several vibration signal measurements along with reading over 500 Modbus registers. Local InsightCM vibration analysis on the cRIO extracts key features from the accelerometer data. Limit detection is run on these features and other equipment state and alarms are triggered when data is out of bounds.  Information collected at multiple sites is sent to a central location either at periodic intervals or based on an alarm condition.

SOFTWARE
NI InsightCM software
Modbus register configuration & reading
Dead banding-style register data collection to decrease amount of data captured and transferred
Dynamic signal data capture
Alarming detection
Data transfer scheduling
Semi-real-time alarm channel display
HARDWARE USED
NI cRIO
NI IEPE Analog Input Module
Microsoft Windows Server to host the NI InsightCM server software
INTERFACES / PROTOCOLS
Modbus TCP
Ethernet TCP/IP
I want an online monitoring solution »

Manufacturing Test Data Logger

Manufacturing Test Data Logger

Data Acquisition System Facilitates Continuous Improvement of Product Performance

Client – A manufacturer of welding consumables

Challenge

Our client produces welding consumables. These products are inspected for continuous improvement of product performance. Our client wanted to standardize their data collection method to improve product quality and utilize SPC (statistical process control) across multiple international manufacturing facilities.

Solution

The solution is a relatively straightforward data acquisition system measuring force, vibration and voltage for comparison across multiple international manufacturing facilities to support continuous improvement of product performance.

Benefits

  • Standardization of data collection across multiple manufacturing sites
  • Ability to check product performance tolerances, which could trigger root cause analysis
  • Ability to analyze data across product runs and across sites for SPC

System Overview

The system utilizes off-the-shelf data acquisition hardware from National Instruments along with custom LabVIEW code to perform force and vibration measurement and basic calculations such as RMS Min and Max. Each test generates an MS Word file showing summary data as well as graphs of each attribute over time. In addition, the program creates (and automatically archives) a complete data set of all data recorded during the trial and finally adds a line with all the summary results and comments to a Master log file. This Master log file can then be sorted by date, wire type, diameter, or any other input for analysis.

SOFTWARE FUNCTIONS
Calculations (e.g. standard deviation, RMS, Max)
GUI for configuration, control, and results.
Automated Report Generation
HARDWARE USED
NI cDAQ
NI C Series voltage input module
NI USB Multifunction I/O Device
INTERFACES / PROTOCOLS
USB

HAVE A SIMILAR CHALLENGE? GET A DATA LOGGER CONSULTATION »
Load More Posts

Learn how to choose a LabVIEW consultant

Maybe you’re LabVIEW programmer quit or retired, or maybe you’ve got some internal capabilities but need some additional support because everyone’s too busy.  From hourly rates to a range of skills, there are several factors to consider. We’ll help you weigh each one. See How to Select a LabView Consultant. 

Headquartered in Rochester NY, we help customers all over the U.S. See the Pros and Cons of a local vs remote supplier for LabVIEW-based test system development.

3,000+

LabVIEW solutions delivered

Great for automated measurement & control: manufacturing test, product validation, machine control and condition monitoring.

700+

LabVIEW FPGA systems delivered

Great for applications requiring seriously deterministic timing, reliable code execution, and multi-channel synchronized processing.

1,000+

LabVIEW RT systems delivered

The combination of LabVIEW RT and the RTOS on which it runs allows for the creation of applications with bounded jitter and latency.

500+

cRIO-based systems delivered

Combining a cRIO controller with the multitude of C Series modules creates a functional real-time controller in a small footprint.

1,500+

PXI-based solutions delivered

Broad range of off-the-shelf expansion cards & processing horsepower make PXI a formidable choice for many automated test applications.