Creating an N-Up Tester to handle increased production volume demands

Enhanced throughput offers ROI payback period of less than 1 year


Automotive Components Supplier / Manufacturer


The company makes automotive components in very large volume, several part models each at more than 1 million per year.

The client’s primary concern was conserving floor space. They were completely out of spare manufacturing space.


Viewpoint created an N-up NI PXI-based Manufacturing Test System. In this case, N=6 because analysis showed that a 6-up electronic part tester allowed the test operator to cover the test time with the load/unload time.

At the high volumes needed, the client needed to parallelize as much as possible. The cost of 6 sets of test equipment and device sockets was less important than speed. Using the equation:

ProfitPerUnit x NumberAdditionalPartsPerYearAfterParallelizing > CostOfTestEquipment,

being able to completely parallelize made the number of extra units per year large enough that the payback time for completely duplicating the measurement instrumentation for each UUT socket was less than about 1 year.


  • Paid for itself in less than 1 year by the enhanced throughput.
  • This approach consumed about 20% the floor space that would have been used for duplicating the test system 5 more times (for a total of 6 testers)

System Overview

Viewpoint developed an NI TestStand application that ran 6 instances of the test sequence independently of each other utilizing the duplicated PXI-based test equipment. The common parts of the overall master sequence were:

  • Startup check for the entire test stand
  • Shutdown of the entire test stand
  • Archiving the test results into the database

Part handling was managed by a PLC and robot which delivered the parts from a tray into the UUT sockets. Digital bits were used for signaling the test sequence which parts were present in their sockets and ready to test.

Test System GUI
Test sequencer
Startup checker
Test Results Archiver