¢ VIEWPOINT
SYSTEMS

Viewpoint 6K Motion VI Library

6K '~

SERVO/STEPPER CONTROLLER

LabVIEW VI Library
for the

Compumotor 6K
Motion Controller

VIEWPOINT SYSTEMS, INC. April 2006 Edition
800 West Metro Park, Rochester, NY 14623 Part Number VS-6K06

Important Information

Viewpoint Systems, Inc. does not warrant that the Program will meet Customer's requirements or
will operate in the combinations which may be selected by the Customer or that the operation of
the Program will be uninterrupted or error free or that all Program defects will be corrected.

VIEWPOINT SYSTEMS, INC. DOES NOT AND CANNOT WARRANT THE PERFORMANCE
OR RESULTS THAT MAY BE OBTAINED BY USING THIS SOFTWARE. ACCORDINGLY, THE
SOFTWARE AND ITS DOCUMENTATION ARE SOLD "AS I1S" WITHOUT WARRANTY AS TO
THEIR PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE OF THE
PROGRAM IS ASSUMED BY YOU.

NEITHER VIEWPOINT SYSTEMS, INC. NOR ANYONE ELSE WHO HAS BEEN INVOLVED IN
THE CREATION, PRODUCTION, OR DELIVERY OF THIS SOFTWARE SHALL BE LIABLE
FOR ANY DIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, SUCH AS, BUT NOT
LIMITED TO, LOSS OF ANTICIPATED PROFITS OR BENEFITS, RESULTING FROM THE USE
OF THE PROGRAM OR ARISING OUT OF ANY BREACH OF ANY WARRANTY. SOME
STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT INCIDENTAL OR
CONSEQUENTIAL DAMAGES, FOR THE ABOVE MAY NOT APPLY TO YOU.

LabVIEW® is a registered trademark of National Instruments Corporation

Compumotor® and 6K® are registered trademarks of Parker-Compumotor, Inc.

All other brand and product names are trademarks or registered trademarks of their respective
companies.

Copyright © 2002-2006, Viewpoint Systems, Inc.
All Rights Reserved.

Reproduction or adaptation of any part of this documentation beyond that permitted by Section
117 of the 1976 United States Copyright Act without permission of the Copyright owner is
unlawful.

Printed in the U.S.A.

Contents

R [] oo [FTox 1 o] USRS USRPPRURTRRIN 1
2 SYSEEM REQUITEIMENTS.ottt bbbt sb e 1
3 Contents of the Viewpoint 6K VI Motion Libraryccccooveviiiiiiiviicieece e 2
4 Recommendations for Using the 6K VI Motion Library..........cccccocinniininienenn 3
4.1 Communication MEthOUS.cccoiiiiiiiiie e 3
4.2 Programming STrAtEQYcoerereririiisiseee e 3
5 Requirements for Using the 6K VI Motion Librarycccccceevviviiieieice e 4
5.1 Motion Planner COmMMUNICALION.c.covveieiieiieii e e 4
5.2 Motion Planner Program File..........ccoviiieiiiii e 4
5.3 Motion Planner CONLIOLooveiiiieiice e 4
6 6K VI Motion Library Software Installationc.cccooeiiiiiicicceee e, 5
7 COMMUNICALION SELUP....eitititiitiiti ettt bbbt b e 5
7.1 Hardware SEUD.......ecouiiieeieee ettt te et e e e ae e nne s 6
7.2 NTFENL VS. NTFENZcoooi ottt 6
7.3 The ARP =S Static Mapping ProCedure............ccouevvivieieeiiiie e 7
7.4 Enable Ethernet COmMMUNICATIONc.oiiiiieiecieseee e e 9
7.5 If Ethernet is NOt CONNEBCIEcocieieiiiece e 9
8 Automating the ARP COMMANTccooiiiiiiiiiiiriiee s 9
8.1 Creating an ARP.BAT File.....ccociiiiieceee st 9
8.2 DHCP Ethernet CONNECLIONSeiieiieieiiesie e see et 10
8.3 Multiple 6K Controllers and ARP.BATccooiiiieiieiiee e 10
9 Creating an INT FIlEco.oiiiieec e 11
9.1 INT File PArameterS.....c.ccueieiieiieiii ettt st 11
9.2 USING the INTFIIE (..o 12
9.3 RUNNING the EXAMPIESecvieiieie ettt 14
10 USING the BK LIDIAIY ...c.oiiiiieice e 16
10.1 Calling a 6K Program from LabVIEW.cccoeiiieiiiiecie e 16
10.2 Motion Scaling in the 6K vs. LAabVIEW. ... 17
11 Viewpoint 6K VI Motion Library RS-232 VIS.......cccccccviieviiieiiece e 18
12 LabVIEW 6K VI REFEIENCE.oiieiiiii et 19
12.1 Interface ENgine VI REFEIENCE........ccveiveie e 19
12,2 FUNCLION VI RETEIENCEeeiiiiiiiiieece e 33

13 HOW TO CONTACT US vttt ittt i et et et e et et et e e e et et e e e anneens 61

Part 1 — Essential Information

1 Introduction

The Viewpoint 6K VI Motion Library is a set of LabVIEW VIs that provide an interface to
Compumotor’s 6K line of motion controllers. A complete motion application can be
implemented in LabVIEW by using the Viewpoint 6K VI Motion Library and Motion

Planner, a software program provided with the Compumotor 6K product.

For more information about Motion Planner and the Compumotor 6K product, refer to

the following Compumotor publications shipped with your 6K controller:

e 6K Series Command Language Reference Manual
e 6K Series Hardware Installation Guide
e 6K Series Programmer’s Guide

These documents are available in portable document format on Compumotor’s website.

2 System Requirements

The following items are required in order to use the Viewpoint 6K VI Motion Library:

e |BM-compatible computer running Windows & LabVIEW with a minimum of 25
MB available hard drive space. LabVIEW compatibility with Windows operating

systems are as follows:

LabVIEWS8 LabVIEW 7.1 LabVIEW 7.0 LabVIEW 6.1

| Win XP | Y | Y | Y |

Y

Win XP x64 Y

Win 2000 Y Y

| Win NT | | Y(SP6) |

Win Me

< << =<

Win 98

| Win 95 | | | |

< << <<

e Motion Planner 4.3 or greater installed on your computer

e A 6K program (.prg) file, built using Motion Planner, that configures the 6K

communication and motion parameters that are specific to your system

e Either an RS-232 cable and working RS-232 communications with your 6K

controller or

e Ethernet LAN card installed and properly configured in your computer and an
Ethernet crossover cable or hub connected from the computer to the 6K
controller

3 Contents of the Viewpoint 6K VI Motion Library

Viewpoint 6K Motion VI Library
{:l Wiewpoint & Makion Library

— BK Motion Language program, "6K_Demo.prg"

-] 6K PRE Programs =
7] Docs User Manual Abobe PDF doc
-] Engines LabVIEW Vis
-] Functions - LabVIEW Vls
-] LabVIEW &K Demos LabVIEW 6K Example Vs
7] Mation Ctrls+Type Defs - LabVIEW TypeDef .ctls
-] RS232 - LabVIEW Vs for 6K Rs232 comm.
Folder Name Description
6K PRG Programs This folder contains sample Motion Planner program

files. There is a demo PRG file and two PRG files
that show control of two separate drives.

Docs This folder contains a PDF file of the Viewpoint 6K
VI Motion Library manual.

Engines An engine in LabVIEW is a VI which performs a
well-defined task by calling other VIs. This folder
contains engines which perform tasks involving the
6K controller. See Part 3 of this manual for
descriptions of the engines in this folder.

Functions The Functions folder contains a group of VIs which
perform simple tasks. These VIs are typically called
by the engine VIs to execute a larger function. See
Part 3 of this manual for descriptions of the
functions in this folder.

LabVIEW 6K Demos This folder contains several demos that can be run to
perform diagnostics on your system. See Part2,
Section 9 for descriptions of the demos in this folder.

Motion Ctrls+Type Defs | This folder contains custom controls and data types
required by the higher level VIs.

RS232 This folder contains LabVIEW VIs that should be
used when communicating with the 6K controller
using RS-232. See Part 3 of this manual for more
details on these VIs.

Recommendations for Using the 6K VI Motion Library

4.1 Communication Methods

The Viewpoint 6K VI Motion Library is built upon Compumotor's Active X
executable Com6srvr.exe, which is installed with Compumotor’'s Motion Planner.
The Com6srvr.exe is an automation server and contains three Active X objects:
Come6srvr.INet for ethernet, Com6srvr.IRs232 for RS232 and Com6srvr.Ilgemini
for Gemini GGV drivers. Note that the Viewpoint 6K VI Motion Library does not
support the Com6srvr.Igemini object.

The VIs included with the Viewpoint 6K VI Motion Library have been designed to
use the Com6srvr.INet ActiveX server for ethernet communications. Some low
level Vis that can utilize the Com6srvr.IRs232 ActiveX server, which has very
limited methods and properties, have also been included. Viewpoint strongly
recommends an ethernet connection for communication between the computer
and the 6K controller to take full advantage of the Viewpoint Systems 6K VI
Motion Library.

4.2 Programming Strategy

To make the best use of the 6K controller with LabVIEW, we recommend a
strategy of writing motion programs with the 6K motion language, and allowing
LabVIEW to interact with these programs. This strategy allows you to
compartmentalize motion, tooling control, tooling protection and safety in the 6K
motion language while LabVIEW performs data acquisition, supervisory control,
man machine interface, etc. LabVIEW can also control motion in the 6K
controller, but this is not recommended.

Requirements for Using the 6K VI Motion Library

Note: If you do not succeed with the tasks described in this section, do NOT expect to be
successful using LabVIEW to integrate the 6K Motion Controller into your LabVIEW application.

5.1 Motion Planner Communication

To be successful with LabVIEW programming for the 6K controller, you must first
be able to communicate with your 6K controller using Motion Planner via RS-232
or ethernet. Your LabVIEW VIs will not work if you cannot communicate with your
6K controller using Motion Planner. Refer to Part 2 of this manual for instructions
on setting up communication with your 6K controller.

5.2 Motion Planner Program File

You must build and save (using Motion Planner) a Compumotor 6K programming
language .prg file that properly configures your specific motion control system.

The 6K .prg file is where you define parameters such as:
e The number of axes in your system
¢ Which axes are servo motors and which are stepper motors
e The resolution of your encoders or steps per revolution
e Pulses or steps per measurement unit (i.e. revolutions, millimeters, inches,
etc.)
e |/O configuration

Note: Viewpoint has included a 6K example .prg file named 6K_Demo. prg that is located in
Program Files\Viewpoint 6K Motion Library\6K PRG Programs. There are also
many 6K example programs available at Compumotor’s website.

5.3 Motion Planner Control

You must be able to control and exercise your motion hardware using Motion
Planner. You should be able to debug and test your system using Motion Planner
to verify that you can move your motors, check velocities, accelerations,
decelerations, homing, over travel limits, inputs and outputs. In summary, you
need to verify that your system works correctly using Motion Planner before you
begin writing code for your application in LabVIEW.

Part 2 - Setup

6 6K VI Motion Library Software Installation

To install the Viewpoint 6K VI Motion Library on your computer, insert the CD into your
CD-ROM drive. The installation program should automatically start.

If the installation program does not automatically start, press Start on your Windows
Toolbar and Choose Run. Type x: setup where x = the drive letter of your CD-ROM
drive.

Follow the prompts of the installation program to complete the software installation.

7 Communication Setup

If ethernet communication is not enabled on your 6K controller, follow the steps outlined
in this chapter to enable either direct connect or hub connect ethernet communication.

Note: For further details on setting up ethernet communication, refer to the online help provided in
Motion Planner. Detailed instructions in Motion Planner can be displayed by choosing the Settings
Option under the Communications menu bar option, then selecting the Port tab, Network, and click on
ARP —S Static Mapping Procedure (click me).

Communications Settings 5'

F'ru:u:luctl Options Port |

" COM1 Mate: If you haven't enabled network
oMz communications in the 6K, then send
= MWTADDR, MTMASE, NTFEMZ and RESET to
 COM3 the BE. uzsing an R5232 connection. Then
zetup your PC with the following procedure;
i COM4

~ COME
" COME
= Other

ARP-5 Static Mapping Procedure [click me]

(] I Cancel Apply Help

7.1 Hardware Setup

To set up ethernet communication with your 6K controller, you will need ethernet
cable(s) appropriate for your type of communication. If you are connecting the
6K controller directly to the computer, you need to use an ethernet cross-over
cable. If your 6K controller is connected to a network and/or a hub, you need to
use standard ethernet patch cables to connect the 6K controller and computer to
the network/hub.

If you are connecting your 6K controller to a network that is accessible to others
in your office, you will need to work with your |.T. department or System
Administrator to have an |IP address assigned to your 6K controller.

Refer to the help section in Motion Planner for details on how to change the IP
address of the 6K controller.

To properly configure ethernet communication, RS-232 communication must first
be established. Connect a RS-232 cable between the RS-232 interface on the
6K controller and one of the serial ports on your computer.

In Motion Planner, select Communications - Settings - Port and then select the
COM port you used to connect to the 6K controller. Select OK. If serial
communication is properly set up, typing TNT in the Terminal Window will display
status information. If no information is seen, check your RS-232 cable and
connections.

7.2 NTFEN1vs. NTFEN2

To enable or disable ethernet communication, a NTFEN command needs to be
specified in the Terminal Window of Motion Planner. This command is also used
in the .PRG file which configures your system.

NTFENO: Use NTFENQO to disable ethernet communication.

NTFENT1: NTFEN1 is useful if you are using Windows 95/98 with no file
sharing and a closed network.

NTFENZ2: NTFEN2 is recommended as the standard ethernet communication
mode, even if you are using a closed network and no file sharing. NTFEN2 is
especially useful if you are using Windows NT, 2000, XP (or /2000/XP) or
Windows 95/98 with file sharing and/or an open network.

Note: When using NTFEN2, you must also follow the ARP -S Static Mapping procedure. This is
described in the next section.

Note: When using COM1, you can communicate to the 6K over either the ethernet port or the
COML1 port at one time. In other words, you cannot communicate via ethernet and RS-232 using

COML1 at the same time. All other COM ports can communicate simultaneously with the ethernet
port.

If you have not already done so, type NTFENZ in the Terminal Window.

In summary, if you must expose your 6K to a corporate network, use NTFEN2
with ARPing. If you are going to connect your 6K(s) to just one computer, then
use NTFEN1 without ARPing.

7.3 The ARP -S Static Mapping Procedure

Type TNT in the Motion Planner Terminal Window. Several pieces of information
are displayed, including

e The 6K IP Address

e The 6K ethernet address in hex (known as the MAC address)

» THT
=5l ETHE STATUS

0-1-209 (dec
55-00-01-D1 (hex)

Obtaining the Computer’s IP Address

Now, go to a MS-DOS prompt by using the Start-Programs menu. Depending on
your operating system, the MS-DOS prompt is either in the list of programs or
under Accessories. MS-DOS prompt may also be referred to as Command
Prompt. For users of Windows 98/NT/2000/XP, type IPCONFIG. The IP address
of the computer is displayed.

"% Command Prompt

Microsoft(R> Windows MWNTC(TH>
(G Copyright 1785-17?6 Microsoft Corp.

GCisrarp —s 172.18.18.167 88-268-55-80-81-D1 192.16.18.23

Cosr

Performing the ARP

Resolving the MAC address of the 6K controller to an IP address is known as
ARPing. With the information from the last two steps, we are ready to perform
the ARP command. Type ARP -S and follow that by the IP address of the 6K
controller, a space, the hex ethernet address of the 6K controller, another space
and the IP address of the computer. For example, refer to the following screen.

The arguments of the ARP command are as follows:

|
arp -s|192.10.10.167 |ID0-9G-55-00-01-D1||192,1'3. 10.23
|

6K's IP address IP Address of the
from TNT report. PC's Ethernet card.

6K's Ethernet address (hex)
from TNT report.

Multiple 6K Controllers

If you have multiple 6K controllers in your system, you need to type an ARP
command for each 6K controller you are using. The values for the IP address
and the ethernet address will be unique for each controller. The IP address for
the computer will be the same for each controller unless each controller is
connected to a separate ethernet card in the computer.

Verifying the ARP
At the command prompt, type ARP -A and press Enter. The 6K controller's IP
address and MAC address will be displayed for each 6K controller.

& Command Prompt

Cisrarp —a

Interface: 172.18.18.23 on Interface 2
Internet Address Phyzical Address Tupe
192.18.18.167 88—78-55-00-01-d1 static

Close the MS-DOS command prompt window.

Note: If the information for your 6K controller is not displayed, return to the beginning of Section
7.3 and re-enter the commands specified. Be sure to use the exact values reported by TNT and
IPCONFIG.

7.4 Enable Ethernet Communication

From the terminal window in Motion Planner, choose Communications - Settings
from the menu. Select the Port tab and click on Network. In the space following
Network, enter the IP address of your 6K controller and Select OK. From the
Terminal window, type TNT and press Enter. The status displayed should
indicate that ethernet is connected.

7.5 If Ethernetis not Connected

If TNT does not report “Ethernet Connected”, power down your 6K controller, re-
power the 6K controller, and repeat the instructions in Sections 7.2, 7.3 and 7.4.

Automating the ARP Command

8.1 Creating an ARP.BAT File

Creating an ARP.BAT file allows your computer to automatically resolve the 6K
controller's MAC address with an IP address when it is booted. Otherwise, you
will have to manually perform this procedure every time you boot your computer.

If you use NTFEN2 you will need to use an ARP.BAT file to statically map the IP
address of the computer to the 6K controller. You will need the MAC address of
the 6K controller to use an ARP.BAT file. Using NTFEN2 with a statically mapped
ARP will provide some level of security on a network to prevent others on the
network from connecting to your 6K controller(s).

If you use NTFENT1, you only need to know the IP address of the 6K controller. It
is not necessary to create an ARP.BAT file or know the MAC address of the 6K
controller.

For a Windows 95/98 computer, add the ARP -S command to the autoexec.bat
file.

For a Windows NT/2000/XP computer, create a batch file that contains the ARP -
s command. Save the file as “6KARP.BAT” to the root directory of the C drive.
The following is a sample 6K ARP.BAT file:

E Gkarp.bat - Hotepad |_ O] x]
File Edit Search Help

arp -s 13.252.177.95% 06-90-55-08-86-63 13.252.178.163
4

de.
-

A

Using Windows Explorer, create a shortcut to this file and then cut and paste the
shortcut into the Startup folder. Alternatively, you can run it programmatically
from LabVIEW during the connection phase of startup to the 6K controller.

Note: After setting the IP address settings and creating the 6K ARP.BAT file, power down the
6K controller and power it up again, then run the 6Karp.bat for all of the new settings to take
effect.

8.2 DHCP Ethernet Connections

If your computer connects to the network using DHCP, where the Server
automatically assigns an IP address to your computer, do not include the IP
address for your computer in the ARP.BAT file. Thus, your ARP command
should have the following format:

arp -s{192.10.10.167| 00-90-55-00-01-D1

Note that the last field
6K's IP address 6K's Ethernet address (hex) is blank for DHCP
from TNT report from TNT report

8.3 Multiple 6K Controllers and ARP.BAT

If you have multiple 6K controllers, each controller needs to have a separate line
in the ARP.BAT file as described in Section 7.3.

The following is an example of a multiple 6K ARP.BAT file for a statically mapped
system:

g 6K _Multi_arp.bat - Notepad - | I:Ilil

File Edit Format Help
arp -z 192.10.10.82 00-50-55-00-00-55 152.10.10.121 Alﬂ
4

arp -s 192.10.10.65% FF-FF-FF-FF-FF-FF 1592.10.10.1Z21|
4

The following is an example of a multiple 6K ARP.BAT file for DHCP system.

10

& 6K_Multi_arp.bat - Notepad =10l x|

File Edit Format Help

arp -s 192.10.10.62 00-90-55-00-00-55 .
arp -5 1%92.10.,10.65 F7¥-FF-FF-FF-FF-FF -
4 a2y

9 Creating an INI File

Viewpoint’s 6K VI Motion Library uses an INI file to pass information about the system
configuration to the LabVIEW VIs. The 6Kx Comm Launcher.vi uses the INI file
specified to set up communications, set parameters, and initialize the hardware to a
known state.

9.1 INI File Parameters

The INI File contains information for several parameters needed to execute 6K
Vis. The parameters specified in the INI File are as follows:

INI Parameter Description

6K_Programl= | This parameter specifies the path and filename of the 6K .prg
file that is downloaded to and runs on the 6K controller. This
program is created in Compumotor’s Motion Planner by the
user or for the user. The 1 refers to the first 6K controller on
the network. A second 6K controller would use the parameter
6K _Program2 and so on.

6K_Setupl= This parameter specifies the name of the 6K program label
that is used to configure, setup or initialize the motion system.
The 1 refers to the first 6K controller on the network. A
second 6K controller would use the parameter 6K_Setup?2
and so on.

6K_Addrl= This parameter specifies four settings that are separated by
commas. The four parameters are as follows:

IP address of the 6K ethernet connection

Number of axes on this 6K controller

Fast Status update rate in milliseconds.

Gem6K control —a 0 is a 6K, 1 is a Gem6K.

The 1 refers to the first 6K controller on the network. A
second 6K controller would use the parameter 6K — Addr2 =
and so on.

Note: The fastest Fast Status update rate that can be set is 10

11

milliseconds.

6K_ARP= This parameter sets the path and filename of the ARP batch
file.
6K_Boxes= This parameter specifies the number of 6K controllers that are

connected via ethernet in your system.

9.2 Using the INI File

An INI file called 6Kx.Config.INI is provided. This file is located with the demos in
the LabVIEW 6K Demos Folder. For the demos to run properly, the
6Kx.Config.INI file needs to reside in the same folder as the demo Vis. In
general, the INI file can be located wherever it is convenient, but the LabVIEW
VIs will need to reflect the path of the file.

A sample single 6K controller INI file follows:

[6K Motion]

6K_Programl="/C/ Viewpoint 6K Motion Library/6K PRG
Programs/6K_Demo.prg"

6K_Setupl=SETUP

6K_Addr1=192.10.10.65,4,20,0

6K_ARP=""/C/ Viewpoint 6K Motion Library/ LabVIEW 6K Demos/6K arp.bat"
6K_Boxes=1

The INI file can support multiple 6K controllers connected to a LAN.
A sample multiple 6K controller INI file follows:

[6K_Motion]

6K_Programl="/C/ Viewpoint 6K Motion Library/6K PRG
Programs/6K_Multil.prg"
6K_Addr1=192.10.10.65,4,10,0

6K_Setupl=SETUP

6K_Program2="/C/Viewpoint 6K Motion Library/6K PRG
Programs/6K_Multi2.prg”
6K_Addr2=192.10.10.62,4,10,0

6K_Setup2=SETUP

6K_ARP=""/C/ Viewpoint 6K Motion Library/ LabVIEW 6K
Demos/6KMulti_arp.bat"

6K _Boxes=2

To see how to interface to the INI file in LabVIEW, refer to the following LabVIEW
code:

12

Current ¥I's Path

Mame of the & INI File

Map IP Address's [l ¥

Kill & Erase okx's
Send Main Prog.Files

Run Program Labels

Ak Camm Launcher, vi

~Jlauncher

errar in (no error) |5 =

13

9.3 Running the Examples

The following flow chart shows how to proceed in order to run the supplied
examples:

Configure your 6K system
communications and
(START HERE Y » motion parameters using >
Motion Planner.
Create your 6K .prg file.

Exercise your 6K motion
system and verify all
works properly using

Motion Planner.

Motion system
works properly
?

-
Bl

y

Please open, examine and run some of the LabVIEW 6K demo-example VIs.
\\Viewpoint 6K Motion Library\LabVIEW 6K Demos\

\ 4
6K Direct Commands Example.vi
This is the simplest of the examples. This VI
formats 6K command strings and transmits them to
the 6K.

A4
6K Test Functions Example.vi
This VI demonstrates some of the VIs that are used
to write commands, read & to write variables and
get status.

Y

6K Simple Move Example.vi
This VI demonstrates how to use some of the Vis
that are used to specify and command motion.

|

6K Read-Write to any Variable Example.vi
This VI demonstrates how to use some of the ViIs
that perform reads & writes to 6K variables.

y

6K Diagnostic Example.vi
This is the highest level or most complex of the
example VIs. This example is used to demonstrate
most of the functionality of the Viewpoint 6K Motion
VI library.

14

There are also new diagnostic-level VIs for testing the Gem6K drives. The
Gem6K Diagnostic Example.vi, located within the \\Viewpoint 6K Motion
Library\LabVIEW 6K Demos\ directory, tests a single Gem6K. The 6K and
Gem6K Diagnostic Example.vi tests multiple 6Ks and Gem6Ks.

Special considerations for 6K Extended I/O EVM 32 SIMMS:

If you are using Compumotor 6K extended I/0O you will want to run our demo
example VI named “6K Test Extended I/O Example.vi”. There are sub VIs that
perform the read and write functions for both extended digital and analog I/O.

Note: Our example is configured for extended 1/O that is plugged into an EVM32 in the following
configuration:

SIMM slot #1, channels 1-8 = 8 digital inputs.

SIMM slot #2, channels 9-16 = 8 digital outputs.

SIMM slot #3, channels 17-24 = 8 analog inputs.

SIMM slot #4, channels 25-32 = 8 analog outputs.

Your configuration and addressing will probably be different.

15

Part 3 — Programming

10

Using the 6K Library

10.1 Calling a 6K Program from LabVIEW

The Vls included in the Viewpoint 6K VI Motion Library provide connectivity and
the most commonly used functions for the Compumotor 6K motion controller.
This includes:
e Setdistance
Set acceleration
Set velocity
Read and write program variables
Perform move
Perform homing
Control I/0O
Monitor limits and 1/0O
Monitor positions

To make the best use of the 6K controller with LabVIEW, we recommend a
strategy of writing motion programs with the 6K motion language, and allowing
LabVIEW to interact with these programs. This strategy allows you to
compartmentalize motion, tooling control, tooling protection and safety in the 6K
controller while the computer and LabVIEW perform data acquisition, supervisory
control, man machine interface, etc.

An example 6K language demo program called “6K_Demao.prg” is included in the
following folder: \Viewpoint 6K Motion Library\6K PRG Programs\

In the upper right of this demo screen, there are three = Bk .prgMotion Functions
6K motion program labels that you can call. This CLSTOM HOMING

SET RECIPE YARIAEBLES
demonstrates how to call 6K labels from LabVIEW. VR | TEE IO B

Selecting any of the three function rows (Custom

Homing, Set Recipe Variables, or Move 1 Then Move Execute
2) and clicking on [Execute] will cause a binary bit C-.')
(VARBZ bit 1, 2, or 3) to turn on for two seconds.

These three function calls execute the 6K program labels CHOMEG, WRRECP
and ONETWO, respectively. See this example in LabVIEW for more details on
accessing the 6K program from LabVIEW.

16

10.2 Motion Scaling in the 6K vs. LabVIEW

Typically, motion scaling is specified in the 6K motion program. The 6K controller
has motion language commands for configuring motion scaling such as:

SCLD - Distance Scaling

SCLYV - Velocity Scaling

SCLA - Acceleration Scaling
SCALE - Scaling enable/disable

Motion Scaling can also be done in LabVIEW. For example, assume a 4 axis
system that has 4 servo motors with encoder feedback of 1000 counts/revolution
pre-quadrature and 4000 counts/revolution post-quadrature. Axes 1,2 and 3 are
linear axis stages with a pitch of 10 millimeters/revolution. Axis 4 is a rotary axis
that rotates 300 millimeters/revolution (roller has a 300 mm circumference).

To specify distance in millimeters, we need to know that

4000 counts rev
10 mm/rev

=400 counts/mm

for axes 1, 2, and 3 and

4000 counts/rev
300 mm/rev

= 13.3333 counts/mm

for axis 4.

To scale in LabVIEW, set up the following in Motion Planner:

SCALE1 ;Enable Scaling

SFB1,1,1,1 ;Select Servo Feedback source as encoders for all 4 axes.
ERES 4000,4000,4000,4000 ;Encoder resolution in counts/rev.

SCLD 4000,4000,4000,4000 ;Distance scale factor in counts/rev.
SCLV 4000,4000,4000,4000 ;Velocity scale factor iIn revs/sec.
SCLA 4000,4000,4000,4000 ;Acceleration scale factor revs/sec2.

Axes 1,2 and 3 are linear axis stages with a pitch of 10 millimeters/revolution.
Axis 4 is a rotary axis that rotates 300 millimeters/revolution (roller has a 300mm
circumference).

Scale the distance desired by 400 counts/mm for axes 1,2 and 3 and by 13.333
counts/mm for axis 4 before writing the distance value to the 6K controller.

17

11

To scale in Motion Planner, use the following code:

SCALE1 ;Enable Scaling

SFB1,1,1,1 ;Select Servo Feedback source as encoders for all 4 axes.
ERES 400,400,400,4000 ;Encoder resolution in counts/rev.

SCLD 400,400,400,4000 ;Distance scale factor In counts/rev.

SCLV 400,400,400,4000 ;Velocity scale factor iIn revs/sec.

SCLA 400,400,400,4000 ;Acceleration scale factor revs/sec2.

By changing the linear stage values from 4000 to 400 for axes 1, 2 and 3, one
count of commanded motion will be equal to 1 mm. Scaling has been performed
in Motion Planner and no scaling needs to be done in LabVIEW before sending
motion commands to the 6K controller.

In the case of axis #4, which is the rotary axis, the ERES, SCLD, SCLV, and
SCLA commands have integer arguments. Thus, we cannot set up the
parameters for axis 4 when 1 count is equal to 1 millimeter. Scaling for this axis
can be performed from LabVIEW.

Viewpoint 6K VI Motion Library RS-232 Vis

We have included the following VIs with the library for communicating with the 6K
controller using RS-232:

6K RS-232 Comm Eng.vi

6K RS-232 Demo 1.vi

RS-232 Wait for response.vi
RS-232 Write wait for response.vi

Start with the 6K RS-232 Demo 1.vi to see how to implement these Vis. We
recommend the use of the ethernet VIs to utilize the full functionality of LabVIEW and
the 6K controller via ethernet.

18

12

LabVIEW 6K VI Reference

12.1 Interface Engine VI Reference

This section contains descriptions of the Interface Engine Vls included with the
6K Motion Control Interface Library. The following arguments are common with
all interface engine ViIs:

3 Errorin (no error) - The error in cluster can accept error
information wired from VIs previously called. Use this information to
decide if any functionality should be bypassed in the event of errors from
other VIs.

P==1 Error out - The error out cluster passes error or warning
information out of a VI to be used by other VIs.

6K Status Global Engine.vi

This VI provides motion status information to other VIs in an application
by acting like a global variable. It needs to be updated by Fast Status in
order to be queried by other VIs that may require status information. A
typical use would be to update this VI in a motion status polling loop, then
query it as needed throughout the application.

Actions]
K @ #xes Stakus out
Ext.Fast status Status E=Fxt,Fast status out
Erar in (no error) Glebal error ouk

Actions — Selects one of the following actions:

Initialize — Initializes the axes status and extended fast status
clusters to defaults or empty arrays. Initialize also calls the
initialize case of the 6Kx Axes Status Parser.vi. You can add your
own code for motion scaling factors here if so desired.

Update - Updates the status information stored in this VI.

Query — Returns the status information stored in this VI.

19

[EY Ext.Fast status — The Fast Status data structure. See the
Com6SRVR Programming Notes in the COM6SRVR Corrections &
Enhancements Section contained in the 6K User Guide Addendum for
description of the Fast Status data structure.

[Z=H Axes Status Out - 8 Axes of custom motion status clusters that
contain the most commonly used motion status bits and position variables.

[Ext.Fast Status Out — The current values of the Fast Status data
structure contained by the 6k status Global Engine VI. See the
Com6SRVR Programming Notes in the COM6SRVR Corrections &
Enhancements Section contained in the 6K User Guide Addendum for a
description of the Fast Status data structure.

6Kx Comm Engine.vi

This VI sets up ethernet communication with up to 8 6K controllers.

Actions B
ek & = comesryr, INet Qut

IP ADDRESS 6K # of Axes ... “‘Ef" weIp ADDRESS 6K # of Axes ..,
&RP Batch File ~ =222 | | WatchdogTime Out 7
Errar in === : il Coméstvr handles
il Fofek's
jf e errar aut
f e Comésrvr handles, Germgk Out
S Camestyr, Germak, ook

Actions — Selects one of the following actions:

Initialize — Sets the number of 6K controllers to one and clears the
error cluster.

Connect - Connects one or more 6K controllers via ethernet
utilizing the Com6srvr.INet ActiveX executable.

Map IP Address - Executes a system call to run the ARP.bat file
to statically map the IP address of the 6K controller to the
computer running the LabVIEW application.

Disconnect - Disables Fast Status with the 6K and closes the
Active X connection to Com6srvr.INet.

Set Fast Status - Sets the Fast Status update rate as specified in
the 6Kx_Config.ini file and enables 6K Fast Status updates
(polling) as opposed to requests for Fast Status updates.

Ethernet Watchdog - Performs a query to see if the
Comesrvr.INet 6K ethernet watchdog has timed out.

Set Watchdog - Sets the value for Comm Timeout in seconds and
number of Comm Retries properties in Come6srvr.INet for the
ethernet watchdog.

20

Flush - Clears the Read buffer.
Query - Passes the Com6srvr.INet handle(s) to the caller.

6K # - The number of the current 6K controller.

L5 ¥ Comé6srvr.INet In - Connection to the Active X Executable
"Comesrvr.INET". To use Comeésrvr.Inet, you must first install Motion
Planner from Parker-Compumotor.

[Bed 6K IP & Axes - 2D Array that contains the IP address, number of
axes, the fast status polling rate (must be >10 mSec), and the Gem6K
information for the 6K controller. In a multiple 6K controller system, the
parameters for each 6K controller will be saved in individual rows.

[Z2 ARP Batch File - This is the path and filename of the 6K Arp
batch file that statically maps the IP address of the 6K controller to the
computer.

=1 Comesrvr.INet Out - Handle to the Com6srvr.INet ActiveX EXE.
This argument is passed out to allow other Vs to query the 6Kx Comm
Engine.

med] 6K IP& Axes Out — 2D Array that contains the IP address,
number of axes, the fast status polling rate (must be >10 mSec), and the
Gem6K information for the 6K controller. In a multiple 6K controller
system, the parameters for each 6K controller will be saved in individual
rows.

WatchdogTime Out - Returns the ethernet watchdog timeout
status bit.

®e1] com6srvr handles — An array of connection handles to the
Comesrvr.INet Active X executable from Parker-Compumotor for
multiple 6K controllers on an ethernet LAN.

[com6srvr handles, Gem6K Out — An array of all Come6srvr
handles, along with a Boolean indicating if the 6K is a Gem6K or not.

[com6srvr, Gem6K Out — The Com6Srvr handle and Gem6K
Boolean for the 6K number input into the 6K # terminal.

21

6Kx Configuration Engine.vi

This VI stores the 6K motion system configuration so that other VIs in the
application may query it for information about a 6K controller in the
system. Parameters returned include the IP address, the number of axes on
a given 6K controller, and the number of 6K controllers in the system.

Actions 1 # of 6K's in the Syskem
aE # EKxF_ - P .ﬁ'.:ddresses
IP ADDRESS 6k # of Axes ., * confiar— b= & of Axes
Ak Setup-Init program labels %ﬁth _l— # of fxes Far this B
Errar in (no errar) "E e GRA-BEE
#of &ks errar ouk
Setup-Init Program Label

Actions — Selects one of the following actions:

Initialize — Stores all 6K controller information provided in the 6K
IPB axes data structure.

Query — Returns information on the 6K controller specified by the
6K #.

6K # - The number of the 6K controller in the system that you
wish to query.

[Eed 6K IP & Axes — Two-dimensional table of 6K communication
parameters for IP address, number of axes Fast Status update rate in
milliseconds, and Gem6K control for each 6K controller in the system.

[ed 6K Setup-Init program labels - An array of 6K .PRG program
labels that call setup or configuration programs in the 6K controller. To
run the 6K programs, use the 6K controller’s Run Program command.

#of 6Ks — The total number of 6K controllers in the system.
of 6K’s in the System — Returns the total number of 6K controller
specified by 6K #.

med] 1P Address — A string array of the IP addresses of all 6K
controllers in the system.

of Axes — An array containing the number of axes for each 6K
controller in the system.

of Axes for this 6K — Returns the number of axes for the 6K
controller specified in 6K#.

6K6 — 6K8 — Boolean value that is true if the current 6K controller
is a 6-axis or 8-axis controller.

22

[(aec]] Setup-Int Program Label — The 6K controller .PRG program
label associated with the 6K controller specified by 6K#.

6Kx Extended IO Engine.vi

This VI is used to gain access to the 6K extended I/0 EVM 32 bricks.
This VI reads from or writes to SIMMS on an EVM 32, including digital
inputs, digital outputs, analog inputs and analog outputs.

Actions —]
EYM32 BE"Kkﬁ - %%%“’ 1E=it SttaSttlst Eit
ric| — i npuk Status Bits
Digi-Bit # JE_E"'E""? _|— Input Skatus ‘Word
Bit CrOff analog Yalue
Analog Channel : Response
Errar in (no errop) = { Bommmmmm grrpr ook
Analog Dukput Yalue : Erraor 7

Actions - Selects one of the following actions:

Digi-Outs Write Bit — Writes data to output bit on a digital output
SIMM

Digi-Inputs Read — Reads status of bit from digital input SIMM
Digi-Outputs Read — Reads status of bit from digital output

SIMM

Analog Inputs Read — Reads DC Volts value from analog input
SIMM

Analog Outputs Read — Reads DC Volts value from analog
output SIMM

Analog Outputs Write — Writes DC Volts value to channel on an
analog output SIMM
Digital SIMM Read — Reads all bits of a digital input SIMM

6K# - The number of the current 6K controller in the system. You
can have up to eight 6K controllers connected via ethernet in your system.

EVM32 Brick# - Specifies the EVM32 brick number to interface
to for the 1/0O operation.

Digi-Bit # - This is the digital input or output bit of a digital SIMM
on an EVM32 brick to be read or written.

Bit On/Off — When writing digital data, this value specifies to turn
a bit On (true) or Off (false).

23

Analog Channel — The analog input or analog output channel
number for an analog SIMM on an EVM32 brick.

¥ Analog Output Value — The analog output value in volts DC.

Bit Status — Indicates whether the digital bit read is On (true) or
Off (false).

¥TEl| Input Status Bits — A boolean array that represents a 32-bit value
for an entire EVM32 brick. For example, if one EVM32 brick has 4 digital
input SIMM modules a 32 bit array is returned.

Input Status Word - This represents the unsigned 32-bit value for
an EVM32 brick’s digital input simm modules.

y Analog Value — The analog input value in volts DC.
=) Response — The string that is returned by the 6K controller after a

write or read command. This string is the same string that can be seen
from the Terminal window in Motion Planner after entering commands.
Typically an * asterisk is the first character returned by the 6K when the
generates a response message. Refer to the block diagram of the VI
“6Kx Wait for Read Response.vi” for more information.

Error ? — Indicates if an error occurs while trying to read or write
to the 6K during EVM32 extended 1/0 commands.

6Kx I-O Status Engine

This V1 is used to read and write status values to and from the 6K
controller.

I-0 Actions
6K # —— (T
_ EF [0 — Input Value
Input brick. il = Bxis Limits
Cukputs brick, R Oukputs
Cutputs Bvte (0-255) Lirviiks
Errar jr s
------ 3
CutputsEit ?:ir.:.;;g
Blt OnlllOFF

I-O Actions - Selects one of the following actions:

Initialize — No action is performed with this option.

24

Read Inputs Brick - Returns the current state of digital inputs for
a specified brick as a 32-bit integer. This action uses the input
brick input described below.

Read Limits - Returns a 32-bit integer value representing the bit
pattern of the home switches and +/- limit switches. Note that
home and limit status is also available from Fast Status. This
method is the same as using the TLIM command in the 6K
programming language.

Read Outputs Brick - Returns the current state of the
programmable outputs for a specified brick as a 32-bit integer.
Read Trigger Inputs - Returns the trigger interrupt status as a 32-
bit integer. This requires Fast Status to be enabled (which is default
for the 6Kx Comm Engine VI). This method is the same as using
TTRIG in the 6K programming language.

Write Outputs Byte - Writes an unsigned 8-bit integer (0-255)
pattern to the specified outputs brick.

Write Output Bit - Writes a boolean T/F to the specified bit on a
specified outputs brick.

6K # - The number of the current 6K controller. You can have up
to eight 6K controllers connected via ethernet in your system.

Input brick - The number of the 6K Digital EVM32 Extended 1/0
Input Brick or onboard 1/0. Onboard inputs are represented by a value of
0. Extended inputs, or EVM32 Input SIMMS, are represented by values of
1 and above. This value is used by the Read Inputs Brick action.

Outputs brick - The number of the 6K Digital EVM32 Extended
1/0 Output Brick or onboard 1/0. Onboard Outputs are represented by a
value of 0. Extended outputs, or EVM32 Output SIMMS are represented
by values of 1 and above. This value is used by the Read Outputs Brick,
Write Outputs Byte and Write Outputs Bit actions.

Outputs Byte (0-255) - Bit pattern (0-255) that will be written to
an output port or output brick on the 6K controller.

Outputs Bit - Bit to be written on a 6K controller's onboard
outputs or EVM32 outputs brick.

Bit On/Off — Sets the state of the output bit to be written to either
on or off.

Input Value - Value returned by the Read Inputs Brick action.

Onboard inputs are represented by a value of 0. Extended inputs, or
EVM32 Input SIMMS, are represented by values of 1 or above.

25

Axis Limits - Boolean array representation of the 32-bit integer
that represents the Home/Limits status. Returned by Read Limits action.

Outputs - Output port or brick pattern returned by Read Outputs
Brick.

Limits — A 32- integer status word representing TLIM home and
limits status returned by the Read Limits action.

Triggers - Value returned by the Read Trigger Inputs action that
represents the trigger interrupt status. Reference the TTRIG command in
the “6K Series Command Reference” manual for more information.

6Kx Jog Engine.vi

This VI is used to jog an axis on the 6K controller.

Actions
Bl # JOG
Auxis & = y
AE™.

Jog Welocity AL e sfeeeemnces arrot oUk
Jog Accel E
Errar in

Jog Decel

Action - Selects one of the following actions:

Enable Jogging - This command enables front panel jog control
for all axes.

Disable Jogging - This command disables front panel jog control
for all axes.

Set Jog Velocity - This command specifies the velocity to be used
upon receiving a jog input

Set Jog Accel-Decel - This command sets the acceleration and
deceleration rates for the jog motion.

Jog CW - This command starts the requested axis “jogging™ in the
positive direction. It will continue to jog until the Stop Jog CW
command is called.

Stop Jog CW - This command will stop the axis that is currently
jogging in the positive direction.

Jog CCW - This command starts the requested axis "jogging" in
the negative direction. It will continue to jog until the Stop Jog
CCW command is called.

26

Stop Jog CCW - This command will stop the axis that is currently
jogging in the negative direction.

6K # - The number of the current 6K controller in the system. You
can have up to eight 6K controllers connected via ethernet in your system.

AXis # - The number of the axis that will be jogged.
¥ Jog Velocity — The velocity the axis will be jogged at.
¥ Jog Accel — The acceleration rate of the jog move.

¥ Jog Decel — The deceleration rate of the jog move.

6Kx Read-Write Engine.vi

This V1 is used to write commands, read or write variables, and send or
read program files to and from the 6K controller.

SendvariableStructure
Action
Yariable Bin —— E
Gl # K u Read Stg Returned
cmd stg ..IWJ Eﬁta;” L Userstatus
&k, Filename j| Yari
Program Label WarB
Yariable to Read Floak War
errar in error ouk
Var. Type
Var.# 1-12,1-8
Yariable Dbl
Yariable Ink

[Z=1 sendVariableStructure — A cluster containing arrays of VARIS,
VARS, and VARBS to send to the 6K controller. Values for a mask and
reserved variables are also included in the cluster.

Action - Selects one of the following actions:

Initialize — No action is performed with this option.

Write Command — The Write Command transmits 6K language
commands to the 6K controller. This action takes as an input a 6K
language formatted command string, appends a CR/LF to the string
and then performs a Write with Blocking Method to the
Comesrvr.INet with a two second timeout.

27

Send File - Takes as an input a string control "6K Filename" with
the Path and Filename of a 6K Language .PRG file and sends the
file to the 6K controller.

Run Program Label - Transmits to the 6Kcontroller a program
label name that exists in the 6K Language .PRG file, causing the
6K controller to run the specified motion algorithm.

Get File - Reads the current file residing in the 6K controller
memory and opens a Windows dialog box with a select list of the
motion algorithms in the 6K controller. You may highlight
program labels that you wish to save and then click on save. You
will then be prompted with a Windows file dialog box to save the
file and where to save the .prg file.

Read - Reads the input buffer from the 6K controller and returns
the data in string format.

Send Variable Packet - Sends the contents of a LabVIEW cluster
named “Send Variable Structure to the 6K.ctl” to the 6K controller.
User Status Register - Performs a read of the 6K User Status and
returns a 32-bit integer result.

Read Binary Variable - Returns the value of the specified binary
variable as a 32-bit integer. Note: This will only read VARB1
through VARBS. To read VARB's above VARBS use the "Read any
VARX with Response.vi".

Read Long Int VARI1-10 - Returns the value of the specified
integer variable as a 32-bit integer. Note: This will only read
VARI1 through. VARI10. To read VARI's above VARI10 use the
"Read any VARXx with Response.vi".

Read Float VARs 1-12 - Returns the value of the specified
floating point variable as a double. Note: This will only read VAR1
though. VAR12. To read VAR's above VAR12 use the "Read any
VARX with Response.vi".

Variable Bin - Value of the 6K boolean variable VARB to be
written to the 6K controller. This variable can only be used with VARB1-
8. To use VARBSs beyond 1-8, use the VI named Write any VARX with
Response.vi.

6K # - The number of the current 6K controller in the system. You
can have up to eight 6K controllers connected via ethernet in your system.

[ie<¥ cmd stg - Formatted 6K Motion Language command string.

[Z2s¥ 6K Filename - Path and filename of the 6K Motion Language .prg
file to be downloaded to the 6K controller.

28

e Program Label - 6K Motion Language program label to be run,
such as a motion algorithm that exists in the 6K program memory that can
be run by calling its label.

Variable to Read - The number of the 6K variable to be read. This
is used to read VAR1-12, VARB1-8 and VARI1-10. Specify only the
number of the variable to read. Thus, to read binary variable 7, input a 7
for this argument. To read any variables beyond these use the VI named
Read any VARX with Response.vi.

Var.Type - Used for writing variables to the 6K controller.
Specifies the variable type: Binary, Float or Integer. This is used to write
to VAR1-12, VARB1-8 and VARI1-To write to variables beyond these
use the VI named Write any VARX with Response.vi.

Var.# 1-12,1-8 -. Specifies the variable number to write to the 6K
controller. This is used with methods that can write only to VAR1-12,
VARBI1-8 and VARI1-10. To write to variables beyond these use the VI
named Write any VARX with Response.vi.

¥ Variable Dbl — Float variable to be written to the 6K controller.
This variable can only be used with VAR1-12. To use VARs beyond 1-12,
use the VI named Write any VARX with Response.vi.

Variable Int - Integer variable to be written to the 6K controller.
This variable can only be used with VARI1-10. To use VARIs beyond 1-
10, use the VI named Write any VARX with Response.vi.

Y Read Response — Response from the 6K controller after
performing the read.

biec] Read Stg Returned - String that is read from the 6K controller
input buffer.

UserStatus - Returns the value of the user status register in the 6K
controller.

Vari - Integer variable read from the 6K controller. Applies only to
VARI's 1-10. To read VARI's beyond 1-10 use the VI named Read any
VARX with Response.Vvi.

VarB - Boolean variable read from the 6K controller. Applies only

to VARB's 1-8. To read VARB's beyond 1-8 use the VI named Read any
VARX with Response.Vi.

29

y Float Var - Float variable read from the 6K controller. Applies
only to VAR's 1-12. To read VAR's beyond 1-12 use the VI named Read
any VAR with Response.vi.

6Kx System Status Engine.vi

This VI is used to request and read various status registers or status
structures in the 6K controller.

Alarmatatus

Action Alarm bik
&k # Ext.Fast skatus
Alarm Status Bit - = ErrorStatus
Error in s e | SwskemStatus

Tirner
== Fask shatus
== grror Uk
Lariiiiiz T55-Transfer 5YS Skatus
CommandZounk
f Svs, Time Frame Counter
e Gemek, Ext Fast status

Action — Selects one of the following actions:

Initialize — Performs no action. This is the default action.
Request Fast Status Update - Allows the Com6srvr.INet to
request a Fast Status update as needed without having to enable the
fast status "streaming mode" (FSEnabled) or set up an update
interval (FSUPDateRate).

Alarm Status - The Alarm Status property returns the state of the
6k controller's alarm status. See the INTHW command in the 6K
command reference for more information. Specifying a bit value of
zero will return the entire 32 bit alarm status as a32-bit integer.
Otherwise if a bit other than zero is specified, that bit will be
returned. The state of the controller’s alarm status can also be
obtained by the Fast Status structure.

Command Count - Returns the number of 6K commands that
have been executed (outside of defined programs) since the
controller was powered up. This count can also be obtained by the
Fast Status structure

System Time Counter - Returns the current time frame counter
value. The time frame counter is a free running counter in the 6K
controller. The counter is updated at the 6K system update rate
which defaults to 2 milliseconds. This requires Fast Status to be

30

enabled. The time frame counter can also be obtained by Fast
Status structure.

Error Status - The error status property returns the current error
status of 6K task 0 only (TER). It requires that Fast Status be
enabled. See the TER command in the 6K Command Reference for
more information. The error status of task 0 can also be obtained
by the Fast Status structure.

Fast Status - Returns the entire Fast Status data structure. This
property allows for faster, more efficient retrieval of the Fast
Status structure. See the 6K User Guide Addendum for more
information.

System Status - Returns the system status for task 0 only in the 6K
(TSS). See the TSS command in the 6K Command Reference for
more information. The system status can also be obtained by the
Fast Status structure.

Timer Status - Returns the current timer value (TTIM) for task 0
only. See the TTIM command in the 6K Command Reference for
more information. The timer status can also be obtained by the Fast
Status structure.

6K # - The number of the current 6K controller in the system. You
can have up to eight 6K controllers connected via ethernet in your system.

Alarm Status Bit — This value specifies the bit(s) to query the
alarm status. Specifying a bit value of zero will return the entire 32-bit
alarm status as a 32-bit integer. Otherwise, if a bit other than zero is
specified, that bit will be returned. See the INTHW command in the 6K
Command Reference for details.

Alarm Status — The alarm status property returns the state of the
6K controller’s alarm status. See the INTHW command in the 6K
Command Reference for more information. The state of the controller’s
alarm status is also returned in the Fast Status structure.

Alarm Bit - Returns the specified alarm status bit value.

System Status - Returns the system status for task 0 only in the 6K
controller (TSS). See TSS in the 6K command reference for details. This
can also be obtained by Fast Status Structure.

Timer - Returns the current timer value (TTIM) for task 0 only.
See TTIM in the 6K Command Reference for more information. The timer
value is also returned by the Fast Status structure.

P==1 Fast Status - Returns the entire Fast Status data structure. This property
allows for faster, more efficient retrieval of the Fast Status structure. See the 6K

31

User Guide Addendum for more information. The following parameters are
returned by Fast Status (with the exception of VAR ((F612)) and Ext.Fast Status:

UpdatelD As Integer ‘ Reserved for internal use

Counter As Integer ‘ time frame counter (2ms per count)
MotorPos(1 To 8) As Long ‘ commanded position (counts)
EncoderPos(1 To 8) As Long actual position (counts)
MotorVel(1 To 8) As Long ‘ commanded velocity (counts/sec)
AxisStatus(1 To 8) As Long * axis status (TAS)

SysStatus As Long ‘ system status (TSS)

ErrorStatus As Long ‘ error status (TER)

UserStatus As Long * user status (TUS)

Timer As Long ‘ timer value (TIM - milliseconds)
Limits As Long “ limit status (TLIM)

Progin(0 To 3) As Long ‘ programmable input status (TIN)
ProgOut(0 To 3) AsLong * programmable output status (TOUT)
Triggers As Long ‘ trigger interrupt status (TTRIG)
Analog(1 To 2) As Integer “ lo-res analog input voltage (TANV)
VarB(1 To 10) As Long ‘VARBL1 - VARB10

Varl(1 To 10) As Long ‘VARIL - VARI10

Reserved As Long ‘ Reserved for internal use
CmdCount As Long * Command Count (from comm port)

Var(1 To 12) As Double ‘ real variables VAR1..VAR12

P==] TSS-Transfer SYS Status - Returns the system status for task O
only in the 6K (TSS). See the TSS in the 6K Command Reference for
more information. The system status is also returned by the Fast Status
structure. This cluster contains the same information as the system status
output status but brings out each status value for a boolean value.

Command Count - Returns how many 6K commands have been
executed (outside of defined programs) since the controller was powered
up. This count is also return by the Fast Status structure.

Sys.Time Frame Counter - Returns the current time frame
counter value. The time frame counter is a free running counter in the 6K
controller. The counter is updated at the 6K system update rate with the
default to 2 milliseconds. This requires Fast Status to be enabled. The time
frame counter can also be obtained by the Fast Status structure.

P=5] Gem6K Ext.Fast Status - Returns the entire Gem6K Extended
Fast Status data structure. This property allows for faster, more efficient
retrieval of the Fast Status structure. See the 6K User Guide Addendum
for more information. The following parameters are returned by Fast
Status (with the exception of VAR ((F612)) and Ext.Fast Status:

32

UpdatelD As Integer ‘ Reserved for internal use

Counter As Integer * time frame counter (2ms per count)
MotorPosAs Long * commanded position (counts)
Encoder As Long “ actual position (counts)

MotorVel As Long * commanded velocity (counts/sec)
AxisStatus As Long * axis status (TAS)

SysStatus As Long ‘ system status (TSS)

ErrorStatus As Long * error status (TER)

UserStatus As Long * user status (TUS)

Timer As Long “ timer value (TIM - milliseconds)
Limits As Long * limit status (TLIM)

InputStatus * onboard input status

Progin(0 To 3) As Long ‘ programmable input status (TIN)
OutputStatus * onboard output status

ProgOut(0 To 3) AsLong “ programmable output status (TOUT)
Triggers As Long “ trigger interrupt status (TTRIG)
Analog(1 To 2) As Integer “ lo-res analog input voltage (TANI)
VarB(1 To 10) As Long ‘VARBL1 - VARB10

Varl(1 To 10) As Long “VARI1 - VARI10

IP Address As Long “ IP address of the Gem6K
CmdCount As Long * Command Count (from comm port)
Var(1 To 12) As Double ‘ real variables VAR1..VAR12
ActualAccel As Long “ actual acceleration

ExtAxisStaus As Long * extended axis status

ConfigStatus As Word * configuration status

SettleTime As Word * settling time

CmdTorque As Word * command torque

ActualTorque As Word ‘ actual torque

ActualVel As Long * actual velocity

12.2 Function VI Reference

4 Axis Accel Select.vi

This VI sets the acceleration parameter in a 6K controller for a single axis
in the range of 1-4. This VI could easily be modified or adapted to set the
acceleration parameters for an 8-axis controller.

Select Axis 4 iz ;
acceleration e Set Accelerations Type
errar in {no error) Lasien error ouk

Select Axis - 4 axis numeric selector used to pick a single axis 1
through 4 to set acceleration in the 6K controller.

33

¥ Acceleration — Acceleration parameter for a single axis in
units/sec 2. Units are determined by how the user configured the 6K .prg
program’s motion scaling SCLA, SCLV, SCLD.

P==1 Set Accelerations Type — This parameter returns a cluster of
booleans indicating which axis is selected, and a cluster of accelerations
for each axis.

4 Axis Decel Select.vi

This VI sets the deceleration parameter in a 6K controller for a single axis
within the range of axes 1-4. This VI could easily be modified or adapted
to set the acceleration parameters for an 8-axis controller.

Select Axis 4 Ayis
Decel DECEL Set Decel Type
error in (no error) IEckor errar ouk

Select Axis - 4 axis numeric selector used to pick a single axis 1
through 4 to set the deceleration parameters in the 6K controller.

¥ Deceleration — Deceleration parameter for a single axis in
units/sec 2. Units are determined by how the user configured the 6K .prg
program’s motion scaling SCLA, SCLV, and SCLD.

B== Set Decelerations Type — This parameter returns a cluster of
booleans indicating which axis is selected, and a cluster of deceleration for
each axis.

4 Axis Velocity Select.vi

This VI is used to set the velocity parameter in a 6K controller for a single
axis within the range of axes 1-4. This VI could easily be modified or
adapted to set the acceleration parameters for an 8-axis controller.

Select Axis v _
welocity elncing " oet Velacity Type
H selector
Efror in (no error) erraor aut

Select Axis - 4 axis numeric selector used to pick axis 1 through 4
to set the velocity in the 6K controller.

34

¥ Velocity -Velocity parameter for a single axis in units/sec. Units
are determined by how the user configured the 6K .prg program's motion
scaling SCLA, SCLV, and SCLD.

DS set Velocity Type - This parameter returns a cluster of booleans
indicating which axis is selected, and a cluster of velocities for each axis.

6K arpBat.vi
This VI executes a DOS command to run the 6K ARP batch file.

command ko execuke 5K P
address|
mapper

errar
L= grror out

errar in

[Z=H command to execute - This argument contains the path and
filename for the 6K ARP batch file.

Error — This is the system dependent exit code that the command
returns.

6Kx Axes Status Parser.vi

This VI extracts the most commonly used motion status bits and position
for up to 8 axes from the Fast Status data structure.

Actions
Faskt skatus BE x - Axes Status
ANES
. PStEl:us
errar in (no error) s error auk

Actions — These are the actions performed using this VI.

Initialize — Sets the 6K controller axis status parser to scale raw
motion counts to engineering units in inches or millimeters,
depending upon how the 6K motion .prg file is written and how the
SCLD command is used.

Status - Parses the Ext.Fast Status structure to the most commonly
used motion status bits and position for 8 axes. The parsed values
are then combined into a cluster and returned in the Axes Status
structure.

[Fast Status — The incoming Ext.Fast Status structure to be parsed.

P==1] Axes Status - Custom motion status cluster that contain the most
commonly used motion status bits and position variables for up to 8 axes.

35

6Kx Comm Launcher.vi

This VI reads the 6Kx_Config.ini file, runs the ARP batch file to statically
map the IP address of the 6K controller, calls the connect method in the
6K Comm Engine, sets the ethernet watchdog parameters, sets Fast Status
parameters and enables Fast Status. Then it runs the Kill and Erase.vi to
kill the 6K controller and erase its program memory. This VI can send the
6K .prg files and run 6K program labels to perform setups or
configurations at launch time.

Ak Ini Path & Filename .
Map IP Address's {Eamm.

Kill & Erase fKx's : launcher|
Send Main Prog.Files -

Run Program Labels -

errar in

error ouk

[E2¥ 6K Ini Path & Filename — The path and filename specifying the
location of the .INI file to download to the 6K controller.

Map IP Address’s - If True, the 6K ARP batch file is executed.

Kill & Erase 6Kx's - If True, the 6K controller execution is killed
and its program memory is erased.

Send Main Prog.Files - If True, the .PRG file specified in the INI
file loaded by 6K Ini Path & Filename is downloaded to the 6K controller.

Run Program Labels - If True, setup or 6K configuration
program algorithms in the 6K controller are executed.

6Kx Error Handler.vi

This VI loads the LabVIEW Error cluster with Com6srvr.Inet errors.

A =
error in (no error) s errar ook
errors

6K Com6srvr Error Codes:

-1 Bad ethernet connection due to socket error

-2 Ethernet connection was shut down

-3 Connection attempt failed

-4 Maximum number of ethernet connections exceeded
-5 Ethernet or RS-232 connection not yet established
-6 No file name specified

-7 Unable to locate specified file

36

-8 Unable to open specified file

-9 Unable to ping ethernet connection

-10 Unable to create ethernet socket

-11 Invalid parameter passed to function

-12 Unable to create or connect ethernet watchdog socket

-13 Unable to create or connect ethernet fast status socket

-14 Unable to create or connect ethernet alarm socket

-15 Unable to create or connect ethernet command socket

-16 Unable to create client ring buffer for ethernet command socket
-17 SetWatchdog returns this error when Windows runs out of timers
-18 Ethernet watchdog timeout error detected by 6Kx Comm Engine.vi

6KXx Run Program Label.vi

This VI makes calls to the 6K controller(s) to run 6K setup or
configuration programs in the 6Kx Comm Launcher V1.

&k, Program Labels eesss==qrmmm

18]
Labels

Error in (no error) error ouk

[2¥ 6K Program Labels - The 6K program labels control is an array
of strings that should have a 1:1 relationship with each 6K controller in the
system. For example,
Array element zero = 6K controller #1's setup or configuration
program label;
Array element one = 6Kcontroller #2's setup or configuration
program label, etc.

6Kx Send File.vi

This VI sends a 6K motion language .prg file to the 6K motion controller.

Bk Filenames wescacsdSERIE
EKn
Fil

error in (na errar) error auk

[G23 6Kx Filenames — The 6k filenames control is an array of path and
filenames of 6K motion language .prg files that should have a 1:1
relationship with each 6K controller in the system. For example,
Array element zero = .prg file associated with the first 6K
controller in the system;
Array element one = .prg file associated with the second 6K
controller in the system, etc.

37

6Kx Wait for Read Response.vi

This VI is most often called by other VIs. For example, Read any VARX
with Response.vi, and Write any VARX with Response.vi each
call this VVI. This VI's purpose is to assist with reading from or writing to
any 6K variables. This VI verifies that the 6K controller produced the
correct response, with a terminating character, after the caller VI
performed a read or write operation to the 6K controller. This VI protects
itself from hanging with a timeout, and records the elapsed time taken to
perform the wait for response operation.

Camestyvr . IMet TF. Camestwr, IMNet Ok
Skqg. to Wait For j_n'“'d —l_" Read Response

Dowell {100 {rsec) P | —Elapsed Time
Timeouk (5 (sec) e TinEnuk
error in (no error) error outk

Read or Wrike - i

[C=3 Ccom6srvr.Inet - Com6srvr.INet Active X object handle.

G Stg. to Wait for - This is the correct response string that should be
returned from the 6K controller when a read operation is performed. If
this string is not received from the 6K controller before the timeout is
executed, a timeout error occurs.

Dwell (10) (msec) - Dwell time specifies when this VI queries the
6K controller for read responses. The default dwell time is 10 msec.

Timeout (5sec) - Timeout is the amount of time in seconds given
for the 6K controller to respond correctly to the read or write operation. If
this timeout value is exceeded, the VI stops waiting for the correct
response and completes execution with a timeout error. The default
timeout is 5 seconds.

Read or Write — Boolean value that sets the type of operation.
Read = False, Write = True

p=] Com6srvr.Inet Out - Com6srvr.INet Active X object handle.

picll Read Response - Read response characters returned from the 6K
controller.

Elapsed Time - The elapsed time in milliseconds for the 6K
controller to respond to the read or write operation.

Timeout - If True, a timeout error occurs because the 6K
controller did not respond correctly to the read or write operation.

38

Binary Variables Parser.vi

This VI takes as its input the Ext.Fast Status cluster from the 6Kx System
Status Engine.vi-Fast Status case, which returns the entire Fast Status data
structure. The VarB array is indexed and parsed to output boolean arrays
that represent VARB1 through VARBS.

VAREL

Fask status B VAaREZ
R - vARE3
“ariabls YARE4
VARES
reoeccscon WA B
VAREY
VARES

=Y Fast status— The incoming Ext.Fast status structure to be parsed.

VARBL..8 — These eight arrays are filed with data currently in the
6K controllers VARB1..8 memory locations.

Check 6K number selected.vi

This VI verifies that the number of the 6K controller that the user wants to
address is actually in the system. This VI queries the 6Kx configuration
engine for valid 6K controllers identified in the system.

For example, if there are two 6K controllers in the system (as defined in
the 6K configuration INI file) and the user selects 6K number 3 which
does not exist, this VI will flag an error letting the user know that an
incorrect 6K controller has been selected.

6 # In Check GE # Cut
GE 3

. selecked
Errar in {no error) error ouk

6K # - The number of the 6K controller that has been selected.

6K # Out - The correct 6K controller number or a default of the
highest number 6K controller in the system if an invalid 6K controller is
specified.

Check 6K Selected vs system config.vi

This VI is called by the 6K Number Selected VI. This VI does the
comparison of the 6K requested vs. the 6K’s in the system. This VI will
display a pop up dialog message if a 6K controller is requested that does
not exist.

39

ok # Check Bk # Ouk
of 6K's in the System - e
. anfig.

Error in (no error)

errar ouk

6K # - The number of the 6K controller that has been selected.

of 6K's in the System - The number of 6K controllers that have
been identified in the system.

6K # Out - The correct 6K controller number or a default of the
highest number 6K controller in the system if an invalid 6K controller is
specified.

Convert 6K Bool to Binary.vi

This VI is used as a sub VI in Read any VARX with Response.vi to
convert the VARB string returned from the controller to an unsigned 32-
bit value (U32). For example, if the VARB string returned from the 6K
controller is 1111 1110 1100 _1000_0001 0011 0111 1111

its binary format is as follows: 11111110110010000001001101111111
which converts to an unsigned 32-bit value (U32) of 4274525055

Ak Warb Boolean Patkern Ecol WAREx Dok
ring

Nurn%-cr

[Z2H 6K Varb Boolean Pattern - VARB string obtained from the 6K
controller.

VARBXx Out - The unsigned 32-bit representation of VARB.

Convert Axis select slider to GO string.vi

This VI creates a 6K language formatted GO command string 4 axis
selector slider control. This VI can easily be revised to work on an 8 axes
selector control.

Bxis Cameart &k, @o Command Skring
Zliderto

Error in {no error) md stg error ouk

Axis — Control for selecting a single axis 1 through. 4. This can be
changed to manage 8 axes.

pi<ll 6K Go Command String - 6K Language GO command string that
IS sent to the axis specified.

40

Convert Exended fast status.vi

This VI takes as an input a variant type returned by the Comésrvr.INet
Active X object and parses it to the extended Fast Status structure type and
elements in the extended Fast Status cluster. This VI is used as a sub VI in
the 6Kx System Status Engine.vi.

raw Fast skatus BK EXT Ext.Fast status
FAST
Status-

raw fast status - Variant type returned by the Com6srvr.INet
Active X object.

D=E1] Ext.Fast status - The Fast Status data structure. See the
Com6SRVR Programming Notes in the COM6SRVR Corrections &
Enhancements Section contained in the 6K User Guide Addendum for
description of the Fast Status data structure.

Convert ExtFastStatus variant to DBLS.vi

This VI parses the Extended Fast Status variant to extract the 6K
controller float variables VAR1-12. This VI is a sub VI of the Convert
Extended Fast Status.vi.

Extended Fast Status Varian, ., Convert
Indes Offset - Bt Fast YARs 1 thru, 12
errar in {no errar) MRS error ouk

Extended Fast Status Variant In — This is the raw Fast Status
variant passed in from the extended Fast Status property from the
Come6srvr.exe.

Index Offset - The index or pointer in the variant array where
VARs#1-12 are located.

: VARs 1-12 — Values of float variables 1-12 in the 6K controller’s
memory.

Convert fast status.vi

This V1 is used as a sub V1 in the 6Kx System Status Engine.vi. This VI
takes as an input a variant type returned by the Come6srvr.INet Active X
object and parses it to the Fast Status structure type and elements in the
Fast Status cluster.

41

raw Fast skakus Zink Fask status

Fast
shatus

raw fast status - Variant type returned by the Com6srvr.INet
Active X object.

P==1] Fast Status - Entire Fast Status data structure. See the
Com6SRVR Programming Notes in the COM6SRVR Corrections &
Enhancements Section contained in the 6K User Guide Addendum for
description of the Fast Status data structure.

Convert Gem6K Extended fast status.vi

This VI takes as an input a variant type returned by the Com6srvr.INet
Active X object and parses it to the Gem6K extended Fast Status structure
type and elements in the extended Fast Status cluster. This VI is used as a
sub VI in the 6Kx System Status Engine.vi.

rav Fast skatus GemBE Gernick Ext.Fast stakus
Fast
Srakuz

raw fast status - Variant type returned by the Com6srvr.INet
Active X object.

P==] Gem6K Ext.Fast status - The Gem6K Ext.Fast Status data
structure. See the Com6SRVR Programming Notes in the COM6SRVR
Corrections & Enhancements Section contained in the 6K User Guide
Addendum for description of the Gem6K Ext.Fast Status data structure.

Convert send variable structure.vi

This V1 is used in the Send Variable Packet case of the 6Kx Read-Write
Engine.vi. This VI formats arrays of 132s for VARIs #1-12, 132's for
VARBs 1-8 and DBLs for VARs #1-12 to a variant data type that the
Comesrvr.exe's Send Variable Packet requires.

Sendvariablestructure BT raw Sendvariablestrocture

zend
i

[E=¥ sendVariableStructure- This cluster contains arrays of 132s for
VARs #1-12, 132s for VARBs 1-8 and DBLs for VARs #1-12 as well as
other reserved variables that are required.

Raw SendVariableStructure - Variant out that is formatted to the
structure that the 6K Come6srvr.exe requires.

42

Convert TIN status string to numeric.vi

This VI converts a string returned by the 6K controller when LabVIEW
requests a transfer input status command (TIN) to a numeric and boolean
array.

TIM Skring Convert &k TIM Input Stakus word ouk
TIM stg &k, TIM Inpuk Status
Error in (no errar) i N“mt%ni;m Yarh Skring Cut
error out

ES TIN String — Transfer input status string read from the 6K
controller by another LabVIEW VI.

6K TIN Input Status word out — The value of the data portion of
the input TIN string represented as an unsigned 32-bit integer.

6K TIN Input Status — The value of the data portion of the input
TIN string represented as a boolean array.

piecll 6K Varb String Out — Modified string from the TIN string input
before being converted to U32 and boolean arrays. This string can be
examined to verify proper formatting of the converted string.

Create GO command.vi

This VI forms a 6K motion language GO command based upon the switch
configuration in the Set Axis to Move cluster, then writes the command to
the 6K controller to start the motion.

B # ——ICreate
Set Axis to Mave o GO........

error in (o error) Semmn

error ouk

6K # - The number of the 6K controller in the system on which to
execute motion.

=1 set Axis to Move - Selects the appropriate switches for the axes
that you do or do not want to move. A boolean array of switches which
allows the user to select the axis or axes on which motion is to be
executed.

Deadband check 6K VARSs.vi

When downloading variables from the computer to the 6K controller for
motion recipes, you may need to check that what the computer sent to the

43

6K controller has been received by the 6K controller. This is referred to as
a recipe variables confirmation. This deadband checker inputs the recipe
variables confirmation and filters the decimal portion of the value to the
precision requested. For example, if the computer sends the 6K controller
VAR99 = 1.2345 and the 6K controller returns 1.23450002, the recipe
confirmation will fail unless the value is filtered after four decimal places.

Scalar or Brray, Array=T = ;

\ritken ko 6K IET Y = Confirmation Failures
Read from &K FBand “ Failure
wehiat was written ko 6k eadurt error ouk

What was read back From &k
Deadband precision
ErFor in {no error) se————

Scalar or Array, Array=T — If true, the array inputs are used to
perform the filtering. If false, the scalar inputs are used to perform
filtering.

¥ Written to 6K - The scalar value that was written to the 6K
controller.

¥ Read from 6K - The scalar value that was read back from the 6K
controller in order to perform a confirmation.

¥ What was written to 6K - Array that was sent to the 6K
controller.

* What was read back from 6K - Array that was read back from
the 6K controller in order to perform a confirmation.

* Deadband precision - The number of decimal places to confirm.

Confirmation Failures - Array of status bits that indicates which
variables failed the confirmation.

Failure — Boolean that indicates if the scalar value failed the
confirmation.

Diagnostics Read-Write to any Variable.vi

This VI is used to write to or read from any 6K controller variable. This
VI also uses the 6K Come6srvr.INet ActiveX object methods for writing

and reading VARs 1-12, VARIs 1-10, and VARBs 1-8. This VI is a sub

VI in the 6K Diagnostics Example.VI.

6k # —Dianc3
Fid.-'r.
GE Wars

Error in (no error) error ouk

44

6K # - The 6K controller to write or read variables.

Elapsed Time.vi

This V1 is used to protect a while loop from hanging in case the 6K
controller does not respond. This V1 is used as a sub vi in the 6K Wait for
Read Response.vi.

b

Set Time (secs) - L/, L Secs, elapsed
Error in fno error) error ouk

Skart Tirne g_\l Tirneouk
|

¥ Start Time — This is the time that the loop was entered.

Set Time (secs) — The amount of time in seconds that must pass
for a timeout to occur.

Timeout — A boolean value indicating if a timeout occurred (true).

Secs.elapsed — The number of seconds that have passed since the
loop was entered.

Enable-Disable Drives.vi

This VI takes as an input the drive control cluster which contains 8
boolean switches that can be set individually to enable or disable up to 8
drives. This VI then formats a 6K language string to enable or disable the
selected drives, then writes the command string to the 6K controller.

G & ———JORIVES
i Enabls - emd skg
Crive Conkrol B
error in (no errar) $444 errar ook

6K # - The number of the 6K controller in the system.

[Z= Drive Control - Cluster used to enable or disable specific drives
for 1 through 8 axes.

bie<ll omd stg - Formatted 6K language string to enable or disable the
specified drives. This is the command that is sent to the 6K controller.

45

Extended I-O Error Handler.vi

This VI is used to parse a string that is returned by the 6K controller to
look for any error messages. This VI is called by the 6kx Extended 1/0
engine.vi.

&k Skg.REn. Ext. IO Errar ¥

Errar
Handler

Error in (no error) error ouk

[Gis¥ 6K Stg.Rtn. — The string that is returned from the 6K controller
by a previous VI that is to be parsed for errors.

Error ? - Indicates whether or not an error occurred while
attempting to read from or write to the 6K controller’s extended 1/0.

Extract SCLD from 6K prg.vi

This VI extracts motion scaling from the 6K controller on 2 axes only.
Axis 1 and 2 distance scales are used to convert counts to distance units in
LabVIEW. The VI searches through the 6K motion language .prg file
until it finds the SCLD command which is distance scaling.

An alternative to using this VI is to hard code these values or perform all
of the scaling in LabVIEW.

Ectract Awis 1 Distance Scale
FOLD ; ;

_ e Bis 2 Distance Scale
Error in (no error) error auk

[Z2H 6k INI Path & Filename — A string containing the file path
structure indicating the location of the .INI file used to set up the 6k
controller.

4 Axis 1 Distance Scale — This value contains the distance units for
axis 1. This can be pulses per inch, millimeters or revolutions, depending
upon the application and how you set up your scaling in the 6K .prg.

d Axis 2 Distance Scale - This value contains the distance units for
axis 2. This could also be pulses per inch, or millimeters or revolutions. It
depends upon your application and how you set up your scaling in the 6K

.prg.

46

Gem6K Axis Status Parser.vi

This VI extracts the most commonly used motion status bits and position
for axis one from the Gem6K Ext.Fast Status data structure.

Actions
Ext.Fast status GemBE Axis 1
Axiz
Parzer

Error in (no error) error ouk

GembkK Axis Status Parser.vi

Actions — These are the actions performed using this VI.

Initialize — Sets the Gem 6K controller axis status parser to scale
raw motion counts to engineering units in inches or millimeters,
depending upon how the 6K motion .prg file is written and how the
SCLD command is used.

Status - Parses the Ext.Fast Status structure to the most commonly
used motion status bits and position for axis 1. The parsed values
are then combined into a cluster and returned in the Axis 1
structure.

[Ext.Fast status — The incoming Gem6K Ext.Fast status structure
to be parsed.

#=5] Axis 1 - Custom motion status cluster that contains the most
commonly used motion status bits and position variables for axis one.

Gem6K Binary Variables Parser.vi

This V1 takes as its input the Gem6K Ext.Fast Status cluster from the 6Kx
System Status Engine.vi-Fast Status case, which returns the entire Fast
Status data structure. The VarB array is indexed and parsed to output
boolean arrays that represent VARB1 through VARBS.

VoOREL

Ext,Fast status EKGem YaREZ
inary YARES
ariakl s YARE4
VARES
oo AR BIR,
VARE?
VAREBS

[Ext.Fast status — The incoming Gem6K Ext.Fast status structure
to be parsed.

47

VARBL1..8 — These eight arrays are filed with data currently in the
6K controllers VARB1..8 memory locations.

Kill & Erase.vi

This V1 is used as a sub VI in the 6Kx Comm Launcher.vi. Its purpose is
to send a kill command to the 6K controller to terminate all 6K tasks, and
erase the 6K controller's program memory.

K # EILL

and
Erase

error in (no error) error ouk

6K # - The number of the current 6K controller in the system. You
can have up to eight 6K controllers connected via ethernet in your system.

KILL Motion.vi

This VI sends a kill immediate command to the 6Kcontroller to kill all
motion and tasks. Important: This VI should be placed in a separate loop,
apart from a loop that is managed by other user interface actions or front
panel objects, so that the kill will actually be serviced.

error in (no error) error ook

6K # - The number of the 6K controller in the system that you
want to kill all motion operations.

Minimize Path.vi

inpath _ oukpath
min
path

This VI takes a path with an .1lb or .exe filename extension and returns the
path without the extension.

[ie<¥ |npath — Full pathname used to access an .llb or .exe filename.

[Bed] Outpath — Returns the path with any .exe and .1lb extensions
stripped from the path.

48

Move Axis.vi

This V1 is used to select one of four axes, set its distance and direction,
and then send the 6K controller a formatted 6K language string to execute
the move.

ok # ———MovE
Morve ko Position AxlE
Direction
Axis
Ertor in (N0 errop) s

error ouk

6K # - Number of the 6K controller in the system that you want to
move.

¥ Move to Position - Position to move to in distance units. NOTE:
This is dependent upon how you set up the system's motion scaling; for
example, raw counts, inches, millimeters or revolutions.

Direction — True indicates counter clockwise motion and false
indicates clockwise motion.

Axis — A 4 axis slider control that is used to select the axis on
which to specify distance, direction and then move.

Parse Setup Params.vi

This VI is used to parse strings read from the 6Kx_Config.ini file to a 2D
array of strings. This is a sub VI in the Read 6kx INI File.vi.

Actions

Ak Info In IP ADDRESS & # of Axes .,

errar in (na errar) error auk

Actions — An option to parse (0) strings to a 2D array of strings or
query (1) the array of strings.

[Eed 6Kx Info In - Array of strings read from 6K_Addr Ini file key.
Each array element corresponds to a 6k controller configuration string.

med] P addr & Axes Out - Formatted dimension array of strings

containing IP addresses, the number of axes per 6K controller and Fast
Status update rate (milliseconds).

49

Parse TVELA String.vi

This VI takes the string returned by the TVELA command and returns the
actual velocity values for axes 1 — 4.

TWELA SEring Parze Axis 1
TVELA _'——l Ais 2

Error in (no error) ring fis 3
E Axis 4
errar ouk

Ed TVELA String — The response from the 6K controller when the
TVELZ command is sent to the controller.

d AXxis 1 — 4 — The current actual velocity of the specific axis as
returned by the 6K controller from the TVELA command.

Process this error.vi

This VI displays a dialog box to allow the user either to ignore the error
condition and continue V1 execution or to terminate running the VI.

Process
Errorz

Rl MoLacalErr
error in {no error) i error auk

NoLocalErr — Returns a True if no error occurred or if the user
chooses to ignore the error. A False is returned if the user chooses to
shutdown the VI.

Read 6Kx Ini File.vi

This VI reads the contents of the 6Kx_Config.ini file and extracts the
following information:

e The 6K ARP .BAT batch file and path for statically mapping the

6K controller's IP address to the computer

e The path and filename of the 6K controller's motion language
program .PRG file
The PRG's setup program label
The 6K controller's IP address
The number of axes and Fast Status update rate in milliseconds
The number of 6K controllers that exist in the system
The number of 6K controllers connected via Ethernet
A table for IP addresses, number of axes, Fast Status update rates,
and Gem6K control.

Note: The 6Kx_Config.ini file must reside in the same folder as this VI.

50

of 6ks
Configuration File path Fread ak_ARP
B Rl %K Program Path+File
errar in (no error) Fid _‘imSetup Label Mame
E Address Canfig
error out
IP ADDRESS 6K # aof Axes ...

=) Configuration file path — The filename and path of the INI file
from which to extract information.

of 6Ks — Returns the number of 6K controllers in the system as
specified in the INI file.

=3 6K_ARP - The 6K controller's ARP batch filename and path.

1] 6K Program Path+File - An array of 6K program names,
filenames, and paths.

[Baed] Setup Label Name - An array of 6K PRG program labels that will
run 6K controller setups or configurations inside the 6K controller.

med] Address Config - An array of 6K controller communication
parameters for IP address, number of axes and Fast Status update rate in
milliseconds for each 6K controller in the system.

med] 6K 1P addr & Axes Out - 2D table of 6K communication
parameters for IP address, number of axes, Fast Status update rate in
milliseconds, and Gem6K control for each 6K controller in the system.

Read any VARx with Response.vi

This V1 is used to read any 6K variable in the 6K Com6srvr.INet Active X
object. This allows LabVIEW to access beyond the first 12 floats, first 12
integers and first 8 boolean variables in the 6K controller.

Type of Yariable —

Ak # —Fead Float
YARX# to Read ame e L Integer
el {m3ec) respondly | 1 —WaREx Qut
Timeouk(Sec) e TipEaik |
Errar in (no error) elapsed time (mSec)
e gpror ouk

Type of Variable - Selects the type of variable to read, VAR
floats, VARI integers, and VARB booleans.

51

6K # - Selects the number of the 6K controller in the system to
read variables from.

VARX# to Read - The number of the variable that you wish to
read from the 6K controller.

Dwell (mSec) - Dwell time controls when this VI queries the 6K
controller for read responses. This allows the user to read a variable at a
specific time.

Timeout(Sec) - Timeout is the set time of the error timer to break
this VI out of the wait for response loop and detect that the 6K controller
did not respond correctly to the read operation.

4 Float - VAR float variable read from the 6K controller.

Integer - VARI integer variable read from the 6K controller.

VARBXx Out - VARB boolean variable read from the 6K
controller.

Timeout! — A boolean that is True if a timeout occurred.

Elapsed time (mSec) - The elapsed time in milliseconds it took for
the 6K controller to respond to the read operation.

Read Characters From File VS.vi

This VI reads a specified number of characters from a file.

convert EDI? |:|-I|:|:F:| :

file path {dialog if emptw) new file path (MotAPath i ...
nurmber of characters (al:-1) characker string
start of read offset (chars, .. *—LL error ouk

mark, after read {chars.)
..................... EOF?

Error in (no error)

=3 file path (dialog if empty) — The path and filename to be read.
number of characters (all:-1) — The number of characters to read.

B=] New file path (not a path if cancelled) — The path of the file from
which data was read.

bie<ll character string — The data read from the file.

52

Mark after read (chars.) — The location of the file mark after the
read. This points to the character in the file following the last character
read.

EOF? — A True is returned if an attempt is made to read past the
end of the file.

Read Float VARs 1-12.vi

This VI reads the float VARs 1-12 from the 6K controller. This VI is
called by the 6Kx Read-Write Engine.vi.

ok # —{READ WAR1-12

Flaats
AR

error in (o error) IE12 error out

6K # - 6K controller in the system that you wish to read float
variables from.

k VAR1-12 - Float VARs 1-12 read from the 6K controller.

Returned strings handler.vi

This VI parses the input string to determine if the 6K controller has
returned a warning or error message. This VI is called by Write 6K
command with Error checking.vi, and Write any VARX with
Response.Vi.

&k Returned String BE
b |

error in (no error) error ouk

[6K Returned String — The 6K return string to be parsed.

Select 6K Prg Label and execute.vi

This VI, used as a sub VI in the 6K Diagnostics demo example, provides
an example of how to select a 6K language .prg program label, format a
string in the 6K language, and then write it to the 6K controller.

ok, # Select &
&K .prg Mokion Functions ! E‘E“P:‘g
error in (na errar)

error out

6K # - The number of the 6K controller to be addressed.

53

6K .prg Motion Functions — A list of select functions which
correspond to 6K components that are written to the 6K controller.

Set Accel.vi

This VI formats a 6K language command string to set the acceleration
parameters on axes 1 through 8. The Set Accel cluster contains boolean
switches to select the axes on which to set acceleration. The switches can
also be set to not write the acceleration parameter to specific axes.

ok # ——
et
Set Accel =1 ,q:c,_.,_ Crmd Stg
error in (no errar) errar ook

6K # - Number of the 6K controller in the system on which to set
acceleration parameters.

=1 set Accel — Cluster which sets the axes and specifies the
acceleration parameters to be written. The applied acceleration depends
on how Motion Scaling is defined in the 6K controller. Units may be in
revolutions/sec?, inches/sec?, millimeters/sec? or raw counts/sec?.

Piec] Cmd Stg — Returns the formatted 6K language command string
that was used to set the acceleration parameters in the 6K controller. This
may be useful during troubleshooting.

Set Decel.vi

This VI formats a 6K language command string to set the deceleration
parameters on axes 1 through 8. The Set Decel cluster contains boolean
switches to select the axes on which to set deceleration. The switches can
also be set to not write the deceleration parameter to specific axes.

B # = Crnd Stg
Set Decels <1 Diceel
errar in {no error) error ouk

6K # - Number of the 6K controller in the system on which to set
deceleration parameters.

[E=H Set Decels — Cluster which sets the axes and specifies the
deceleration parameters to be written. The applied deceleration depends
on how Motion Scaling is defined in the 6K controller. Units may be in
revolutions/sec?, inches/sec?, millimeters/sec? or raw counts/sec?.

54

pie<ll Ccmd Stg — Returns the formatted 6K language command string
that was used to set the deceleration parameters in the 6K controller. May
be useful during troubleshooting.

Set Distance+Direction.vi

This VI formats a distance/direction command string in the 6K motion
language, and writes the result to the 6K controller.

Gk #
Set Distance icmd kg
Error in (no error) errar aut

6K # - Number of the 6K controller in the system on which to set
distance and direction parameters.

[set Distance — Cluster which sets the axes and specifies the
distance and direction parameters to be written. The applied distance
depends on how motion scaling is defined using the SCLD command in
the 6K controller. Units may be in raw counts, revolutions, inches, or
millimeters.

pi<ll Ccmd Stg — Returns the formatted 6K language command string
that was used to set the distance parameters in the 6K controller. This
may be useful during troubleshooting.

Set Homing+Home.vi

This VI formats a 6K language command string to set the chosen axes to
be homed, and to set the home direction. The parameters are then sent to
the 6K controller to perform the homing moves.

Bk # — s
Set Homing = :‘;’“'“‘3
error in (o error) 2nt

Zmd Stg

error ouk

6K # - Number of the 6K controller in the system on which to
perform homing.

[set Homing — Cluster which specifies the axes to be homed, and
the homing directions.

piec] Cmd Stg — Returns the formatted 6K language command string

that was used to set the homing parameters in the 6K controller. This may
be useful during troubleshooting.

55

Set Velocity.vi

This VI is used to format a 6K language string to set velocity on the axes
specified. Velocity units may be in raw counts/sec, revolutions/sec,
inches/sec or millimeters/sec depending upon how motion scaling was
configured by the SCLV command in the 6K .prg program file.

Gk # ——
%
Set Yelocities = N‘;Lciw Crnd kg
Error in (no error) e

6K # - Number of the 6K controller in the system on which to set
velocity.

[E¥ set Velocities — Cluster to specify which axes to set velocity,
which axes to ignore, and the velocity parameters for the selected axes.

pie<l] Cmd Stg — Returns the formatted 6K language command string
that was used to set the velocity parameters in the 6K controller. May be
useful during troubleshooting.

STOP Motion.vi

This VI formats a 6K language command string to stop motion on the
specified axes. Important: A stop is used to stop the motion on one or
more axes, but will not affect any tasks that are running. To immediately
stop all motion and all tasks, use the kill command. If using KILL
Motion.vi, use it in a separate loop as described in the KILL Motion.vi
section, above.

ok # —8
Set Axis STOPs = atio
error in (no error) ==

error ouk

6K # - Number of the 6K controller in the system on which to stop
motion.

[E5¥ set Axis STOPs — Cluster to specify which axes to issue a stop
command, and which axes to ignore.

Switch Onboard VM25 Outputs.vi

This VI demonstrates how to manage the 6K controller’s onboard digital
outputs. This VI is used as a sub VI in the 6K diagnostics demo. This VI
calls Write Byte to W25 Outputs.vi.

56

B # ——T o]
BK Outputs - [Suikch

= ks
Error in (no errar) errar ook

6K # - Number of the 6K controller in the system to turn on or off
the onboard digital outputs.

6K Outputs - Boolean array that represents the output pattern to
be written to the 6K controller’s onboard digital outputs. Note: The 6K2
and the 6K4 have four onboard digital outputs. The 6K6 and the 6K8 have
eight onboard digital outputs.

Write 6K command with Error checking.vi

This VI writes commands to the 6K controller, waits for a response, and
performs error checking on the string that is returned. In a multiple 6K
controller application, this VI’s ability to wait for the response from the
addressed controller prevents this VI from being called by other higher
level VIs during the command and response. Note: We recommend using
this V1 for all 6K writes, instead of using Write 6K command.vi.

Corngstwr JMet "WTite Corngsevr IMet Cuk
&K Cmd. Skring ""J—';Tfr' = & Read Response
Dol {100 {msec) checkinge L Flapsed Time
Tirmeouk (5 (sech EK { L Timeout
Errar in (no error) error auk
REEIE'I:F:I "."'."ritEI:T:I

=4 comeésrvr.Inet — Refnum from ActiveX automation server.

¥ 6K Cmd.String - Formatted 6K motion language command string
to be transmitted to the 6K controller.

Dwell (10) (msec) - Dwell time controls when this VI queries the
6K controller for responses to the written command.

Timeout (5) (sec) - Timeout is the set time of the error timer to
break this VI out of the wait loop and detect that the 6K controller did not
respond correctly to the read or write operation.

Read(F) Write(T) - Boolean to set the type of operation, where:
False = Read
True = Write

=1 Com6srvr.Inet Out — Pass through of the ActiveX automation
server refnum.

57

piecll Read Response - The characters returned from the 6K controller
in response to the written command.

Elapsed Time - The elapsed time in milliseconds it took for the
6K controller to respond to the write operation.

Timeout - If True, a timeout error occurred because the 6K
controller did not respond correctly to the write operation.

Write any VARX with Response.vi

This VI writes to any 6K controller variable in the Com6srvr.Inet ActiveX
object. This allows LabVIEW to write beyond the first 12 floats, first 12
integers, and first 12 boolean variables in the 6K controller.

Type of Yariable

Bk # it 1 Timeouk |
WAR# bo Write Wariiblg L elapsed time (m3ec)
YaR ik ap Error ouk

WARI

VARE

Error in (no error)
el {m3ec)
Timeouk(Sec)

Type of Variable - Selects the type of variable to write: VAR
floats, VARI integers, or VARB booleans.

6K # - Selects the number of the 6K controller in the system to
write variables to.

VARX# to Write - The number of the variable to write to in the
6K controller.

¥ VAR - Float value to write to a 6K VAR variable.
VARI - Integer value to write to a 6K VARI variable.
VARB - Boolean value to write to a 6K VARB variable.

Dwell (mSec) - Dwell time controls when this VI queries the 6K
controller for responses to the written command.

Timeout(Sec) - Timeout is the set time of the error timer to break

this VI out of the wait for response loop and detect that the 6K controller
did not respond correctly to the write operation.

58

Timeout ! - If True, a timeout error occurred because the 6K
controller did not respond correctly to the write operation.

Elapsed time (mSec) - The elapsed time in milliseconds it took for
the 6K controller to respond to the write operation.

Write Byte to VM25 Outputs.vi

This VI takes an unsigned 8-bit value to be written, formats a 6K language
command string and writes it to the 6K controller to turn on the desired
output bits. Note: The 6K2 and the 6K4 have 4 onboard digital outputs.
The 6K6 and the 6K8 have 8 onboard digital outputs. See the 6K Series
Hardware Installation Guide for instructions on connecting the 6K
controller's outputs.

Gk, # ———write
Cukputs Byte (0-255) = SEtput#
EFFOF in (no errar) i

error out

6K # - Number of the 6K controller in the system to turn on or off
the onboard digital outputs.

Outputs Byte (0-255) - 8 bit value to be written to the 6K
controller's onboard digital outputs. Note: The 6K2 and the 6K4 have 4
onboard digital outputs. The 6K6 and the 6K8 have 8 onboard digital
outputs.

Write VARB1 or VARB2.vi

This VI demonstrates how to manage writing to VARB1 and VARB2
using boolean array controls in LabVIEW. This VI uses the send boolean
variable method of the Come6srvr.Inet ActiveX object to write to the first
two VARBsS.

GE # ——WRITE
WARED « g AREA
WAREZ ok errar aut
error in (no error)

6K # - The 6K controller number in the system to write VARB1
and VARB?2.

VARBL - Boolean pattern to be written to VARBL in the 6K
controller.

VARB2 - Boolean pattern to be written to VARB2 in the 6K
controller.

59

Write VARBs1-8.vi

This VI writes an array of 32-bit integers to the 6K controller boolean
variables VARB1-VARBS using the send variable method of the
Comesrvr.Inet ActiveX object.

ok & — wirike
Wirk, YART 1-5 =T ¥ AREs

error in (no error) 18

error ouk

6K # - The number of the 6K controller in the system that is to
receive the array of VARB:s.

Wrt. VARI 1-8 - Array of 32-bit integers to write to the 6K
controller’s VARBL1 through VARBS.

Write VARIs 1-12.vi

This VI writes an array of 32-bit integers to the 6K controller integer
variables VARI1-VARI10 using the send variable method of the
Comésrvr.Inet ActiveX object.

Bk # wirike
VAR1-12 WAR's
error in {no errar) lloib error ouk

6K # - The number of the 6K controller in the system that is to
receive the array of VARI's.

VARI 1-12 - Array of 32-bit integers to write to the 6K
controller’s VARI1 through VARI10.

Write VARs 1-12.vi

This VI writes an array of floats to the 6K controller float variables
VAR1-VAR12 using the send variable method of the Come6srvr.Inet
ActiveX object.

GBI # wirike
VAaR1-12 WAR's
errar in {no errar) 1-12 error ouk

6K # - The number of the 6K controller in the system that is to
receive the array of float VARSs.

VARI1-12 - Array of floats to write to the 6K controller’s VAR1
through VAR12.

60

How to Contact Us

Viewpoint Systems, Inc.
800 West Metro Park
Rochester, New York 14623

Voice: 585-475-9555
Fax: 585-475-9645
Email: support@ViewpointUSA.com

Technical support is available any business day from 9:00 am to 5:00 pm Eastern time.
Of course, you may fax or e-mail questions at any time.

61

