LabVIEW Consultants2019-06-25T15:34:22-04:00

LabVIEW Consultants

US-based manufacturers: Need a LabVIEW Expert?

This puts us in the top 2% worldwide

Need some existing code updated?  Need a whole new LabVIEW-based test system?  Whether you had code dropped on your lap, or you’re just too busy with other things, our LabVIEW experts can take the LabVIEW programming off your plate so you can focus on what you need to.

We have one or more:

Certified LabVIEW Architect

Certified LabVIEW Developer

Certified TestStand Architect

Certified TestStand Developer

Talk to a LabVIEW Consultant.

We care about your privacy

We’ve helped teams at some of the world’s most innovative companies

Testimonials

“Very impressed…kudos to Viewpoint”

I really want to thank you for all your help getting us to this stage in automating our testing. We had our customer in this week to oversee some testing and they were very impressed, which is definitely kudos to Viewpoint.

David, An Aerospace & Defense Company

“Significant value”

The Viewpoint team provides significant value to our projects, and I really enjoy working with Viewpoint.

Jerzy Wolujewicz, PhD, Nammo Pocal Inc.

“Valuable part of our global team”

I have been working with Viewpoint for 15+ years on multiple projects. They have always provided creative and quick solutions to all of the problems we have placed in front of them. I have always considered them a valuable part of our global team.

Engineering Group, A Global Manufacturer

LabVIEW Case Studies | Projects

Decreasing Test Time for Aircraft Landing Gear

Decreasing Test Time for Aircraft Landing Gear

Endurance Testing for Aircraft Nose Landing Gear Steering

Client: A major manufacturer of aircraft landing systems

Challenge

A major manufacturer of aircraft landing equipment needed to develop a means of endurance and fatigue testing new designs for aircraft steering. The actuators involved in steering the nose landing gear (NLG) required precise and reliable control through thousands of steering cycles.

Control loops needed to be closed at faster than 1 ms.

Prior systems were handled manually without real-time control and monitoring.

 Solution

Our customer designed and built a test rig to provide the hydraulics and environmental conditions for the endurance testing on the NLG. Viewpoint Systems supplied the electronic data acquisition and control hardware coupled with real-time software to provide the required fast control loops. The configuration and execution of the 1000s of steering cycles were managed by the same data acquisition and control system through a set of configuration screens that allowed specification of turn rates, min/max angles, drive and resistive torque settings, and so on.

  • The various PID control loop configurations were also configurable along with gain scheduling required under different operating conditions.
  • The environmental conditions were supported by controlling a temperature chamber through ramp and soak settings occurring during the steering tests.
  • Measurements on the steering performance were collected from commanded setpoints, sensor readings, and controller outputs during the entire test run.
  • Alarm and fault conditions, such as force exceedance, were monitored continuously during operation so that the system could safely run unattended.

The entire system underwent an extremely rigorous acceptance testing procedure to verify proper and safe operation.

SOFTWARE FUNCTIONS
Arbitrary Load and Position Profiles
Flight Position Control
Load Position/Force Control
Endurance/Flight Schedule Execution
Deterministic RT for DAQ and PID Control
HARDWARE
PXI/SCXI Hybrid RT Chassis
Discrete Pump Skid Interface
Custom Control Panel/Console
INTERFACES
Ethernet TCP/IP
SCXI

Results

Prior to deployment of our system, setup of a test was much more manual and operators needed to be around to monitor operation.

With our new system, complete endurance testing could be specified and executed with minimal supervision. Furthermore, the tight integration of real-time control and coordinated data collection made report creation much simpler than before.

The rigorous acceptance test gave trustworthiness to the data and allowed the design engineers to validate performance more quickly than the prior semi-automatic and manual methods of operation.

Setup of tests has been improved from prior operations. The endurance testing itself operated over a huge number of cycles lasting weeks to months between scheduled lubrication and maintenance.

The deployed system measures performance during the entire testing, even between the scheduled downtime.

Industrial Embedded Equipment – Leak Tester

Industrial Embedded Equipment – Leak Tester

Shortened Product Development Cycle for Industrial Equipment – A Leak Tester

Background

Leak testing sounds simple. It seems like all you have to do is wait for the pressure (or vacuum) to drop by a detectable amount and estimate the leak rate based on the time it takes to reach that detected decrease. But, in an assembly line, it’s not, mostly due to the desire to do everything as quickly as possible.

Many manufactured products need to be tested for leaks to be sure they hold pressure or vacuum. Examples are fuel cells, braking systems, air bags, air conditioner components, balloon catheters, and so on. The list is almost endless.

Our client needed to develop a new leak tester with lower cost and more sensitivity and same small size.

Technical Highlights

stopwatch

The manufacturer wants the test to run as fast as possible – production volumes can’t tolerate a long wait to sense a leak. And, don’t forget, these products are not supposed to leak, so the “bad” ones leak very s-l-o-w-l-y. This is where the complexity in performing a leak test in a manufacturing environment arises.

pressure-gauge

The tester must be super-sensitive – to be able to sense a leak as soon as possible balanced by cost constraints and the need for the tester to be physically small so it fits on the production line

user-experience

The tester needs to provide a solid user experience – so it needs to be robust and smart so the production test operator can just use it without hassle.

Challenges

Our client had been building commercial leak testers for many years. Their development tools were built on in-house hardware designs and a software library for making measurements and interacting with the operator via buttons and a display.

The typical development cycle extended to over 1 year and they wanted to shorten that development timeline by utilizing more Commercial Off The Shelf (COTS) components, especially since embedded controllers had improved dramatically over the recent years, and they did not sell a huge number of these specialized product per year. Put another way, they were looking for a supplier that would pay better attention to them since they were competing for responsiveness from say the microcontroller vendors when those vendors were used to customers purchasing 100s of thousands of microcontroller per year. They were ready for a change in design tools and subcomponent vendors.

Another issue was the need for extremely accurate pressure detection (so the leak test could be fast!). They wanted to go with COTS components, but they could not find a COTS detection system (sensor and digitizer combination) with enough accuracy and responsiveness. They needed a hybrid approach of COTS for the controller and custom for the signal conditioning and acquisition I/O.

Results

The prototype unit was designed, built, and ready for testing of the leak testing capability in about 2 months after the requirements were completed. The collapsed single-board solution was then designed, built, and unit tested about 1 ½ months later.

leak-tester-sub-assy-and-enclosure

Leak Tester Sub-assembly and enclosure

The custom circuitry combined with some proprietary algorithms executed on the NI SOM RIO was able to measure with about 10 times better sensitivity than the previous generations. This sensitivity translated into faster leak measurement times – a real selling point to our customer’s customers.

The customer was ready to do their validation in about 4 months after we had the green light to build. The ready-to-go VERDI prototyping system was a huge time-saver.

Viewpoint’s Solution

We worked with our client to develop a system based on the NI RIO platform from National Instruments (NI). We initially considered the NI sbRIO but chose the NI SOM RIO (sbRIO-9651) because of its size and slightly lower costs.

 SOM-system-on-module-NI-sbrio-9651-nobk

NI SOM

After an initial review of the customer’s design goals and requirements, a concerted effort was spent to morph those goals and adjust those requirements by iterative discussion between both of our engineering teams. It was truly a collaborative requirements gathering and design activity. We brought our knowledge of the NI SOM RIO I/O and LabVIEW programmability capabilities and the customer shared their understanding of leak detection and their customer needs.

  VERDI-chassis-with-modules

VERDI – Chassis with modules

Enter VERDI – Once the requirements and initial design were complete, we designed and built a custom A/D and signal conditioning circuit board that could interface with the NI SOM RIO. The initial version of this board was designed to connect to our VERDI prototyping system so we could rapidly validate the performance of the circuitry without needing to build the complete single-board system (with SOM and other circuitry all on one board).

After some tweaking to improve this custom circuitry, we essentially copied the board layout from all the necessary I/O (SOM controller board, digital I/O, display I/O, and the custom leak-detection circuitry onto a single-board system. This effort was reduced, since we had a large amount of ready-to-reuse hardware designs already developed for the VERDI prototyping system.

Industrial Embedded Monitoring – Remote Structural Health Monitoring using a cRIO

Industrial Embedded Monitoring – Remote Structural Health Monitoring

Using a cRIO to remotely assess structural health

By connecting these systems with a host PC, we can monitor continuous vibration activity and alarm conditions on a variety of structures despite inclement weather.

Challenge

Continuously monitoring the structural health of the Long Island Railroad (LIRR) Viaduct despite the relative inaccessibility of the structure.

Solution

Using CompactRIO, LabVIEW FPGA, and the LabVIEW Digital Filter Design Toolkit to measure the modal analysis of vibration data generated from ambient excitation, capture this data remotely, and analyze significant events.

Background

Engineers use structural vibrations to assess the conditions of many constructions and machines, including buildings, bridges, dams, towers, cranes, and mountings. Although we have had tools to monitor structural vibration for decades, these tools restrict data collection to short durations of high-fidelity waveforms or longer durations of summarized power in frequency band results. Many structures vibrate in meaningful ways only in the presence of ambient forces such as wind, vehicle activity, nearby construction, or random events such as earthquakes and tornados. Therefore, data collection needs to be active during these events.

Due to recent improvements in memory storage, processor speed, and wideband wireless communications technology, we can collect high-fidelity waveforms over long periods. We can also communicate to host PCs that aggregate structural vibration data across multiple collection locations, providing permanent data collection and superior analysis and reporting capabilities.

STRAAM Corporation, a leader in structural integrity assessment, and Viewpoint Systems, a Select National Instruments Alliance Partner, collaborated to develop a system that functions outdoors and in other less-accessible sites and maintains the capabilities of the available PC-based solution. Ultimately, we produced an enhanced version of STRAAM’s SKG CMS™ system to install on a Long Island railroad bridge.

 System Requirements

The system needed to perform the following operations:

  • Collect data from accelerometers and other environmental sensors
  • Store weeks of data locally at full acquisition rates
  • Analyze custom data in real time
  • Publish summary statistics periodically to the host
  • Upload waveforms to host on request
  • Offer rugged, lightweight, cost-effective, reliable OEM deployment
  • Contain flexible architecture to handle future capabilities
  • Ensure secure user access control

System Design

We chose a system based on the NI CompactRIO platform and dynamic signal acquisition (DSA) C Series modules. The CompactRIO and associated C Series signal conditioning modules have an operating temperature range of -40 to 70 °C, well within typical environmental extremes for most installation locations. Additionally, the CompactRIO controller has no moving parts, increasing the mean time between failure and ensuring it can withstand physical mishandling during shipment and installation. For software, we decided to use the NI LabVIEW Real-Time Module and the LabVIEW FPGA Module. We used LabVIEW FPGA for basic signal acquisition as well as some custom antialiasing filtering to allow for sampling rates below the capabilities of the DSA module.

 condition-monitoring-equipment-mounted-to-support-beam

Figure 1 – Equipment mounted to LIRR Support Beam

Data Acquisition and Filtering

The DSA module acquired acceleration signals via special sensors, supplied by STRAAM, that output information about tilt and acceleration. Because large structures resonate at low frequencies, it is important that these sensors have extremely low noise, high dynamic range, and low frequency response to gather information about structures at less than 1 Hz. The low frequency range and long-term data storage need combine to create a maximum data collection rate frequency of 200 samples per second (S/s). The NI 9239 does not sample that slowly due to its delta-sigma converter technology, so we sampled at 2,000 S/s and used lowpass digital filtering on the field-programmable gate array (FPGA) to produce an antialiased signal at 200 S/s. Simple subsampling through decimation would violate the Nyquist criterion. Using the LabVIEW Digital Filter Design Toolkit, we produced a 28-tap infinite impulse response (IIR) filter with a 3 dB roll-off at 0.8 times the sample rate with a stopband attenuation greater than 90 dB. The Digital Filter Design Toolkit includes tools to automatically generate code to deploy the filter to the FPGA. We carefully selected fixed-point arithmetic to ensure proper operation without using excessive FPGA resources. The final filter was a 24-bit fixed-point solution with a 4-bit mantissa.

condition-monitoring-remote-front-panel-acceleration-waveform

Figure 2: Remote Front Panel Displaying Acceleration Waveform Capture

Configuration, Signal Processing, and Alerts

STRAAM uses proprietary analysis routines, based on the structure’s resonant frequencies, to extract relevant information from the continuous stream of acceleration data. Because ambient energy excites the structures, we analyzed some initial data to locate these resonances. After this initial period, we configured the CompactRIO to perform the proprietary analyses based on the location of these resonances. We handled all activity in this initial setup remotely via wireless communications. We connect to CompactRIO over a wireless connection, then to a LabVIEW remote panel where we initially acquire and assign resonance bands.

The signal processing requires the spectral power and time-domain structure of the waveforms inside those resonant bands. The CompactRIO processor and FPGA module can calculate fast Fourier transform (FFT)-based power spectrums and perform time-domain filtering calculation so we can base calculations on the complicated algorithms provided by STRAAM. Furthermore, the large CompactRIO RAM can archive raw acceleration waveforms for later retrieval. The LabVIEW development environment greatly simplifies adjusting these calculations. We apply additional calculations to identify noteworthy events to alert the engineers when important conditions occur. These conditions may signify the presence of a meaningful ambient excitation or that considerable changes to the structure have occurred.

Host Communication

In order to successfully operate, this system needs to communicate effectively to the host PC. Because the system is deployed in almost-inaccessible and outdoor locations, all interactions with the system should occur remotely. Using cellular modems, the system connects via TCP/IP to upload important information, issue event alerts, and allow remote configuration. We designed the LabVIEW application to send periodic summary information via custom binary messages to the host with information about the condition of the structure and the CompactRIO system. The host then tallies this information along with all other SKG CMS™ systems deployed in the field. In addition to this summary information, the host can pull raw waveform data from the CompactRIO RAM. To avoid tampering and unauthorized access, we password protected all connections.

 condition-monitoring-data-file-configuration

Figure 3 – Data File Configuration Screen

Summary

We have successfully installed several functional SKG CMS™ systems based on the CompactRIO platform. By connecting these systems with a host PC, we can monitor continuous vibration activity and alarm conditions on a variety of structures despite inclement weather. Our customers enjoy the benefits of modern Ethernet-driven, Web-based connectivity to verify the status of their structures and we enjoy the benefits of the rugged, reliable, low-cost, and reprogrammable CompactRIO system for data collection.

Digital Record And Playback – For a RF Receiver

Digital Record And Playback – For a RF Receiver

Collect hours of data at >1 GB/s

Client: A large high-tech R&D-oriented company.

Challenge

  • Record hours of data at >1GB/s
  • Play back digital test patterns for the RF receiver at real-time rates to understand bit-error rates
  • Understand effects of RF chain prior to digitization
  • Allow for platform to assist with algorithm development, debug and optimization

Solution

We utilized off-the-shelf hardware combined with custom software and had a working system after ~7 man-weeks of effort. The DRAP system records and plays back digital data only, with A/D conversion being handled by the DUT. The system was developed on the National Instruments PXI Express platform. A RAID array of disks is used to continuously record data. Data manipulation is performed on a Xilinx Kintex-7 FPGA that forms the basis of a National Instruments High Speed Serial board. The DRAP system is connected to the RF receiver using standard SFP+ connectors. A UI connects to the system locally or over Ethernet to monitor and control DRAP during record/playback. The customer can also control the system via an API so that it can be integrated into a larger test system.

Benefits

  • Allows for repeatable data through the processing chain.
  • Can re-sample data, inject new headers into data packets, and re-pack new data.

System Overview

digital-record-and-playback-RF-sensor-case-study

Check out DRAP »

Manufacturing Test System for Electrical Components

Manufacturing Test System for Electrical Components

Replacing Obsolete Custom Electronics with cRIOs in High-Power Capacitor Testing

Modular Embedded cRIO Systems Shortens Development and Reduces Risk in Complex PC-based Test System

Client: A major manufacturer of electrical power generation and distribution equipment.

Problem Scope

This project involved retrofitting a test system used to verify operation of a high-power capacitor used in electrical power distribution. This system was originally built around 1990. Critical sections of the original test system relied on custom, wire-wrapped analog and digital circuitry to process, analyze, and isolate the high-voltage and high-current signals created by the capacitor. Analog filters, rectifiers, and comparators produced pass/fail status signals. A master PC, other measurement and control equipment, the analog circuits, and a six-position carousel were integrated to create the entire automated test and control system.

For each unit under test (UUT), test specifications are obtained from a Manufacturing Execution System (MES) and cached locally. The subsystems at each carousel position are designed to run independently. This parallel capability allows greater throughput and reduced test time per capacitor unit. In addition, as different capacitor models move through the carousel stations, the test parameters and conditions must be aware of the particular model being tested.

Test results for UUT are pushed back to the MES system for record retention and data mining. The existing MES interfaces were retained exactly for the retrofit.

Challenge

All capacitors require 100% testing prior to shipment, so the test system is critical for the facility operation. Two or even three shifts are common depending on production needs and the facility cannot afford any significant downtime. Thus, a challenge was to design and build a test system that worked and was very robust.

Another huge challenge was the lack of documentation on the existing system, requiring a sizable amount of reverse engineering to understand the test system operation before development on the new system could begin.

Furthermore, one of the most important challenges surrounded replacement of substantial amounts of original test equipment before the new test equipment could be installed. Thus, we absolutely had to minimize the time and risk in this upgrade changeover.

Technical Highlights

system-architecture-capacitor-testing

A schematic of the overall system architecture is shown in the figure. The major components of the system are:

  • Master PC for supervisory control and test execution management
  • NI cRIOs with FPGAs and Ethernet for independent yet PC-supervised operation
  • Station-specific FPGA code for replacing wire-wrap circuitry functionality
  • Integration with existing MES, safety equipment, tooling, and measurement hardware

The architecture chosen was made very modular by the capabilities offered by the cRIO. The Master PC interfaced with station-specific measurement instrumentation as needed, such as GPIB controlled equipment, and coordinated control and outcomes from the cRIOs. This additional equipment is not shown in the figure.

Solution

The Master PC coordinated all the activities including interfacing with the existing MES database and printers at the manufacturing facility. In addition, this PC provided the operator interface and, when needed, access to engineering screen on a diagnostic laptop.

The cRIOs were essential to the success of this test system. Each cRIO functioned as the equivalent of a high-speed standalone instrument.

The cRIOs at each carousel test position had to provide the following features:

  • Digital I/O for machine feedback, safeties, and fault conditions
  • State machines to coordinate with external commands and signals
  • Perform numeric calculations to emulate the old analog circuitry
  • Control loops for currents associated with voltages needed by different capacitors
  • Communication support with the master PC
  • Computation and detection of internal fault and UUT pass/fail conditions

We were able to duplicate the behavior of the wire-wrapped circuitry by converting the schematic diagrams of these circuits into FPGA code and then tweaking that code to mimicking the actual signals we measured with data acquisition equipment on the original test hardware.

The outputs of the circuitry were reconstructed on the FPGA with band-pass filtering, calibration compensation, point-to-point RMS, and phase & frequency functions. This functionality was implemented in fixed-point math and the 24-bit inputs on the A/D provided sufficient resolution and bandwidth for a faithful reproduction of the electronic circuitry. These embedded cRIOs provided a very effective solution to what otherwise might have required another set of costly and rigid custom circuits.

Finally, for optimizing the task of replacing the old equipment, we used a set of cRIOs, not shown in Figure 1, to provide Hardware-In-the-Loop (HIL) simulation of the manufacturing and measurement equipment. These cRIOs imitated the rest of the machine by providing inputs to and reacting to outputs from the embedded cRIO controllers, thus supporting comprehensive verification of the new test system before the tear-out of the existing hardware. Furthermore, these HIL cRIOs enabled fault injection for conditions that would have been difficult and possibly dangerous to create on the actual equipment.

Yes, I need a manufacturing test system »
Load More Posts

Learn how to choose a LabVIEW consultant

Maybe you’re LabVIEW programmer quit or retired, or maybe you’ve got some internal capabilities but need some additional support because everyone’s too busy.  From hourly rates to a range of skills, there are several factors to consider. We’ll help you weigh each one. See How to Select a LabView Consultant. 

Headquartered in Rochester NY, we help customers all over the U.S. See the Pros and Cons of a local vs remote supplier for LabVIEW-based test system development.

3,000+

LabVIEW solutions delivered

Great for automated measurement & control: manufacturing test, product validation, machine control and condition monitoring.

700+

LabVIEW FPGA systems delivered

Great for applications requiring seriously deterministic timing, reliable code execution, and multi-channel synchronized processing.

1,000+

LabVIEW RT systems delivered

The combination of LabVIEW RT and the RTOS on which it runs allows for the creation of applications with bounded jitter and latency.

500+

cRIO-based systems delivered

Combining a cRIO controller with the multitude of C Series modules creates a functional real-time controller in a small footprint.

1,500+

PXI-based solutions delivered

Broad range of off-the-shelf expansion cards & processing horsepower make PXI a formidable choice for many automated test applications.